Publication Type:

Journal Article


GeologyGeology, Volume 45, Number 7, p.591-594 (2017)




The Tethyan orogen is host to numerous porphyry Cu ± Mo ± Au deposits, but the majority formed during subduction of the Neo-Tethyan ocean basin in the late Mesozoic–Cenozoic; very few deposits have been found associated with Paleo-Tethyan subduction. We propose that this sparsity is due to widespread anoxia in the Paleo-Tethyan ocean basin, leading to the generation of relatively reduced arc magmas that were infertile for porphyry Cu formation. A compilation of published geochemical data indicates that Neo-Tethyan arc rocks have higher average Cu contents and V/Sc and Sr/Y ratios compared to Paleo-Tethyan rocks, indicating higher magmatic oxidation states and greater fertility for ore formation during Neo-Tethyan subduction. Subduction of relatively reduced oceanic lithosphere, or reduction of normal moderately oxidized arc magmas by interaction with reduced lithosphere, can therefore destroy the ore-forming potential of arc magmatic suites.