Publication Type:

Journal Article

Source:

Geochimica et Cosmochimica Acta, Elsevier, New York, NY, International, Volume 74, Number 22, p.6387-6405 (2010)

ISBN:

0016-7037

Keywords:

anaerobic environment, Archean, chemical composition, chemical ratios, chemically precipitated rocks, crystal chemistry, Deposition, depositional environment, Eh, geochemistry, ICP mass spectra, iron formations, iron oxides, lithogeochemistry, marine environment, mass spectra, metals, ocean basins, oxidation, oxides, paleoenvironment, Paleoproterozoic, Precambrian, proterozoic, rare earths, Sedimentary rocks, spectra, upper Precambrian, yttrium

Abstract:

The ocean and atmosphere were largely anoxic in the early Precambrian, resulting in an Fe cycle that was dramatically different than today's. Extremely Fe-rich sedimentary deposits-i.e., Fe formations-are the most conspicuous manifestation of this distinct Fe cycle. Rare Earth Element (REE) systematics have long been used as a tool to understand the origin of Fe formations and the corresponding chemistry of the ancient ocean. However, many earlier REE studies of Fe formations have drawn ambiguous conclusions, partially due to analytical limitations and sampling from severely altered units. Here, we present new chemical analyses of Fe formation samples from 18 units, ranging in age from ca. 3.0 to 1.8 billion years old (Ga), which allow a reevaluation of the depositional mechanisms and significance of Precambrian Fe formations. There are several temporal trends in our REE and Y dataset that reflect shifts in marine redox conditions. In general, Archean Fe formations do not display significant shale-normalized negative Ce anomalies, and only Fe formations younger than 1.9 Ga display prominent positive Ce anomalies. Low Y/Ho ratios and high shale-normalized light to heavy REE (LREE/HREE) ratios are also present in ca. 1.9 Ga and younger Fe formations but are essentially absent in their Archean counterparts. These marked differences in Paleoproterozoic versus Archean REE+Y patterns can be explained in terms of varying REE cycling in the water column. Similar to modern redox-stratified basins, the REE+Y patterns in late Paleoproterozoic Fe formations record evidence of a shuttle of metal and Ce oxides across the redoxcline from oxic shallow seawater to deeper anoxic waters. Oxide dissolution-mainly of Mn oxides-in an anoxic water column lowers the dissolved Y/Ho ratio, raises the light to heavy REE ratio, and increases the concentration of Ce relative to the neighboring REE (La and Pr). Fe oxides precipitating at or near the chemocline will capture these REE anomalies and thus evidence for this oxide shuttle. In contrast, Archean Fe formations do not display REE+Y patterns indicative of an oxide shuttle, which implies an absence of a distinct Mn redoxcline prior to the rise of atmospheric oxygen in the early Paleoproterozoic. As further evidence for reducing conditions in shallow-water environments of the Archean ocean, REE data for carbonates deposited on shallow-water Archean carbonate platforms that stratigraphically underlie Fe formations also lack negative Ce anomalies. These results question classical models for deposition of Archean Fe formations that invoke oxidation by free oxygen at or above a redoxcline. In contrast, we add to growing evidence that metabolic Fe oxidation is a more likely oxidative mechanism for these Fe formations, implying that the Fe distribution in Archean oceans could have been controlled by microbial Fe uptake rather than the oxidative potential of shallow-marine environments. Abstract Copyright (2010) Elsevier, B.V.

Notes:

GeoRef, Copyright 2018, American Geological Institute.<br/>2011-034298