Structurally constrained inversion in Geochron space
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The result is an inverted model (Figure 5) that more closely resembles the

hypothesized geology in Figure 3. Figure 5. 2-D model resulting from an inversion smoothed in Geochron space.

Testing geological hypotheses

Brock As Figure 5 illustrates, Geochron inversion produces models that look more like the interpreted geological
Hornaday River . . . . .
River ' cross-section. It also provides a method to test hypotheses regarding geological features, such as unit
= locations, thicknesses, and fault dip directions against the measured geophysical data. Forinstance, the dip
Q= of the westernmost fault in has been changed in Figure 6 from east- to west-dipping. While the RMS misfit of
this model increases only marginally, the inversion is forced to insert the highlighted feature in order to fit the
data. Borehole logs from a nearby well (~10 km to the north) suggest that most likely cause for conductive
contrasts at depths around 1 km is the Escape Rapids Fm., which has shales and mudstones at its upper
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% contact and increasing proportions of sandstone and siltstone at depth. The model in Figure 5 better
complies with this interpretation, and at present there is no explanation for the highlighted feature in Figure
Phanerozoic Proterozoic 6. We can therefore have some confidence that the westernmost fault is likely vertical or east-dipping.
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Figure 1. Geological map of the Brock Inlier showing the MT.
From Spratt et al. (2016), modified from Okulitch (2000).
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Figure 2. 2-D model resulting from a standard Occam-style smooth inversion.
Black triangles indicate MT station locations shown as red circles on Figure 1.
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mapping (Rainbird etal., 2015). Modified from Spratt et al. (20106).
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Figure 4. Present-day deformed geological space is transformed to Geochron

space, in which the effects of all deformational processes have been removed.
Modified from Mallet (2004).
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Figure 6. 2-D model resulting from an inversion smoothed in Geochron space using an
alternate geological model as the structural constraint.
Conclusions

Geochron inversion is a new inversion methodology in which geological and structural data are
used to constrain the produced models. Early results indicate that the technique provides a
method to test and improve upon current geological interpretations. With further improvements,
Geochron Inversion should provide a framework to better integrate stratigraphic and structural
datadirectly into the inversion process.
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