Large-Scale Geology and Fault Geometry of Gold-Endowed Archean Crust: Insight from the Matheson Transect of the Abitibi Greenstone Belt

Rasmus Haugaard

A new Canadian research initiative funded by Canada First Research Excellence Fund

Laurentian University Université Laurentienne

HARQUAIL SCHOOL OF EARTH SCIENCES ÉCOLE DES SCIENCES DE LA TERR

Largest orogenic gold provinces

Gold province/	total 20	old Age (Ga) Gold Event
greenstone belt (GB)	(tonne	s) 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5
Abitibi GB	* 11,81	9
Eastern Goldfields Province	* 5,132	2
Dharwar Craton	* 2,332	
Rio das Velhas GB	* 995	8
Sukumaland GB	* 776	
Midlands GB	684	• • •
Southern Cross Province	498	
Barberton Province	373	
Pilbara Craton	93	
Karelian Craton	37	
deformation/ metamorphism/rifting	▶ magmat	ism gold mineralisation giant orogenic gold deposits present

Legend

Volcanic rocks

Mafic to ultramafic intrusive rocks Felsic to intermediate intrusive rocks

Metal Earth geophysical survey

H

Bierlein et al (2006)

Transect scale research – Abitibi greenstone belt and orogenic gold

Y

General orogenic Au model – Crustal shortening

- Regional metamorphism and deformation during crustal shortening events → elevated heat and fluid flux
- 2. Large scale conduits/shear zones was originally terrane sutures/boundaries
- 3. Crustal-scale shear zones (1st order) tapping, focusing and transporting the fluids

Abitibi model – Extension?

- Upper crustal geology Modelling key greenstone belt assemblages and <u>fault</u> geometry (integrating surface geology, gravity, MT and high resolution seismic)
- Full crustal geology Modelling the geology based on the physical properties of the crust (integrating surface geology, MT and deep seismic imaging)

Assess the **metallogenic fingerprints** of the Matheson transect including characterizing potential deep-seated mineralizing fault systems

Matheson – surface geology and 3D magnetic inversion

Matheson – 2.5D forward gravity modelling

Matheson – High resolution seismic and AMT

H

Matheson – Upper crustal geology model

Matheson - Full crustal seismic

Matheson - Full crustal seismic and MT

Source of low resistivity in Archean crust

- Water/brines/melts?
- Sulfides?
- Graphite?

Metamorphic graphite formation:

Fluid-deposited graphite from carbon-bearing fluids such as CO_2 , CH_4 , and CO or mixtures of these. (*Mantle derived magmas + metamorphic derived fluids are CO_2 -rich)

Stable to mantle depths

Grain boundary graphite films (5-50 nm) \rightarrow <u>solid</u> and <u>interconnected</u> conductive phase (Mareschal et al. (1992).

Grain-boundary graphite in Kapuskasing gneisses and implications for lower-crustal conductivity

Marianne Mareschal*, William S. Fyfe†, John Percival‡ & Tammy Chan†

NATURE · VOL 357 · 25 JUNE 1992

Matheson - Full crustal geology

- Does the C1 feature represent a regional first order crustal-scale fault?
- Is it part of the PDF and how are the PDF in Matheson linked to the C1 feature?
- Did the deep-rooted C1 feature focused and transported hydrothermal fluids into the PDF in Matheson?

Graphitization: a byproduct of late-stage thermal events following craton stabilization?

Upper crustal geology

- A ca. 30-40° southern dip of the Porcupine Destor Fault zone
- A steep northern dip of the Pipestone Fault
- A depth of the Porcupine basin of up to 2.2-2.6 km

Full crustal geology

- Conductive middle-to-lower crust and a resistive upper crust corresponding to the greenstone belt
- A deep-crustal conductive corridor connects the lower crust with the surface geology at the Upper Tisdale-Blake River boundary. This could indicate the existence of a deepseated mineralizing system – Porcupine Destor Fault zone?
- The PSF have no crustal conductive corridor developed at the Porcupine/Kidd Munro contact, suggesting this fault are a less endowed crustal structure than the PDF

A new Canadian research initiative funded by Canada First Research Excellence Fund.

