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Figure 4: Cross-section A-A’-A’’. Weaker deformation is noted West of the deposit, where F2 dominates before structural complexities increase as maximum stages of F1 deformation are present at the Tom deposit. The near-vertical North 
trending Tom Fault intersect both Tom West and Tom East. 

Figure 3:  Photo looking East at the Tom West, Tom East and Tom North deposits. Cross-section lines A-A’-A’’ and B-B’ are shown. The green and red boxes relate to �gure 7 and �gure 9, respectively. (Tom North projected to the surface) Figure 6: A complex area of polyphase deformation. F1 folds are tight and upright, overprinted by open, 
upright F2 folds and a weak F3 buckling before returning to monoclinal layering to the North.

Figure 7: Cross-section B-B’. Complex F1 folding shows Tom West and Tom East within a parasitic antiform to the larger Tom Anticline. Inset: F1 and F2 deformation 
heavily deform the incompetent ore deposit before the Eastern Fault intersects Tom East, and the Tom Fault intersects the South of Tom East and Tom West.  

Figure 8: Surface exposure of units 400m North of B-B’ inset. Note the homoclinal folding to the East of the Tom Fault. Timing of fault movement between 
the Eastern Fault and the Tom Fault may either displace Tom East into the sky or further to the North at depth. Antiform synform pair plunge South.
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MMPs

MMPl 
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Cretaceous

Upper Devonian

Middle to Upper Devonian

Earn Group

Portrait Lake  
 Formation

Fuller Lake  
member

Macmillan Pass  
members

Resistant, blocky, grey weathering, porphyritic to equigranular biotite
quartz monzonite and biotite granite.

Resistant, brown weathering, thick-bedded, parallel laminated
and ripple cross-laminated micaceous sandstone, siltstone and shale.

Black carbonaceous mudstone, typically laminated with minor silt, typically radiolarian. 
Characterised by rounded and �attened barite concretions   

Black carbonaceous mudstone, very siliceous with silt-sized grains of radiolaria. Laminated 

intervals with minor silt. 

Black carbonaceous mudstone, laminated intervals with minor silt, some mudstone beds 
appear 'gritty' with silt-sized grains that are mainly radiolarian.

Black carbonaceous mudstone, lamination may be visible or may appear 
massive, typically pyritic.

Polymictic well rounded mudstone matrix supported diamictite.  
Typically associated with fault movement. 

Massive, semi-massive and interbeds of sphalerite, galena, barite, 
pyrite and carbonaceous mudstone. Unit is heavily deformed 
among bedding layers with highly contorted laminations. 

Medium grey silt banded mudstone. Characterised by carbon-
ate-bearing sandy bands with pervasive ankerite alteration. 

Medium grey silt banded mudstone. Characterised by carbonate-bearing 
sandy bands with pervasive ankerite alteration. 

Resistant grey weathering, massive chert-pebble conglomerate with 
siliceous matrix and minor coarse sandstone and mudstone interbeds

Coarse grained chert lithic arenite, silt and mud interbeds. Pulses 
seen above and below Conglomerate unit. 

MACMILLAN PASS Volcanics: Orange weathering, carbonate-rich ma�c �ows and volcaniclastic rocks with minor 
related sedimentary rocks. Subsequent blocky, resistant, dark grey weathering,  
coarse-grained gabbro sills and dikes.

Road River Group

Middle Devonian

Upper Silurian to Middle Devonian

Middle to Upper Silurian

Lower Ordovician to Middle Silurian

SAPPER Formation:

STEEL Formation:

DUO LAKE Formation:

Very recessive, bu� to tan weathering, silty limestone with minor calcareous black shale.  
Minor lenses of massive grey limestone seen locally.

Orange to green weathering, dark grey bioturbations disturb bedding, wispy laminated, green shale and mudstone. 
Thick beds of orange weathering pyritic dolostone are intermittent

Silver-grey weathering, medium-bedded, siliceous mudstone and chert. Abundant graptolites seen in mudstone layers.

Introduction
Stratiform Pb-Zn orebodies that make up shale-hosted 
massive sulfide (SHMS) deposits account for 40% of Zn
 and 60% of Pb reserves globally (Tikkanen, 1986). 
SHMS deposits form at shallow depths and low 
temperatures in reduced sedimentary basins from upwelling 
hydrothermal fluids that circulate through the 
sedimentary sequence scavenging metals during extension. 
The structural geology of basin genesis along 
synsedimentary fault conduits is crucial to understanding
 the formation of Pb-Zn-Ag shale-hosted stratiform sulfide 
deposits. Fluid circulation is dependent on faults to provide
vertical permeability across otherwise impermeable 
sedimentary layering. Defining the fault architecture of a basin is a critical step in reconstructing 
basin geometry and identifying prospective areas for SHMS mineralization. 

The Selwyn Basin, Yukon, comprises a sequence of clastic sedimentary rocks that host several 
large SHMS deposits, including the Tom and Jason deposits of the Macmillan Pass area (Fig. 1; 
(Abbott and Turner, 1991). These deposits are hosted in Devonian strata that have been exten-
sively folded by mid-Cretaceous crustal shortening.
 
This project intends to build on and improve upon previous local mapping if the Macmillan Pass 
area and advance the structural understanding of the effect of Cordilleran deformation on SHMS 
mineralization in the Selwyn Basin. 

Evaluating the structural controls of the Macmillan Pass area and identification of fault geome-
try and kinematic histories further defines the structural geometry, spatial variation in strain 
accommodation, overprinting relationships and current state of SHMS mineralization seen at the 
Tom Deposit (Fig 2). 

Background
The supercontinent Rodinia underwent protracted extension and rifting in the Late Neoproterozoic to 
Early Cambrian resulting in the formation of a passive margin on the northwestern margin of the new 
Laurtentia continent (Nelson et al., 2013). During this time, the Neoproterozoic to Lower Devonian 
Paleozoic Selwyn basin formed as a large marine depocenter along the northern Laurentian passive 
margin in what is now central-eastern Yukon. The Selwyn basin was bound on its eastern margin by 
the similarly aged Mackenzie carbonate platform that developed on the Laurentian continental shelf. 

From the Late Devonian, the Laurentian passive margin transitioned into convergent margin with 
eastward directed subduction (Nelson et al., 2013). Subduction was accompanied by back-arc exten-
sion and the formation of back-arc basins into which Devonian to Carboniferous sediments were 
deposited over Selwyn Basin strata. The Macmillan Pass SHMS deposits are hosted in one such 
Mid-Devonian to Mississippian extensional basin. Back-arc related sedimentation in the Selwyn 
basin ended prior to final accretion of the peri-Laurentian and Insular terranes to ancestral North 
America in the Middle Jurassic (Nelson et al., 2013). 

Continued subduction and plate convergence through the Jurassic and Cretaceous resulted in the 
Cordilleran orogeny. Within the Selwyn basin this orogeny is expressed as a foreland fold and thrust 
belt that is up to 130 km wide. The Macmillan Pass SHMS deposits occur at eastern edge of this belt, 
west of a transition into a temporally equivalent fold and thrust belt in Mackenzie platform strata. 

Abbott (2013) divided the Macmillan Pass area into three structural domains, the North, Central, and 
South Domains. The domians differ in terms of the Middle Devonian to Mississippian stratigraphy 
and the style of and intensity of cordilleran deformation (Abbott and Turner, 1991; Abbott 2013). 

The Central Block is bounded by reactivated faults and host to the mineralized SHMS deposits Tom 
and Jason within the Earn Group (Fig. 2). Detail studies of the Earn Group in this area (Carne 1979, 
1982; Abbott and Turner 1991; and Abbot 1982, 1991;) provide an opportunity to improve structural 
understanding and geological interpretations of the Tom Deposit.

Figure 1: The Macmillan Pass is located in the 
Yukon near the Northwest Territories border
and the community of Ross River.
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Figure 2: Geological mapping of the Tom deposit. A number of faults are seen, with the most signi�cant being the Eastern Fault, Panhandle Fault and the late Tom Fault.
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Stereographic Projections
Structural data gathered within the mapping 
area shows three phases of deformation, with 
F1 being the most dominant locally.

Folds range from very tight, steep folds that plunge south, to open, doubly 
plunging folds often resulting in metre scale dome-and-basin structures (Fig. 
7). S1 is weakly present in areas, and completely absent in others, being 
di�cult to distinguish.
F2 is seen to overprint F1, and is typically seen as upright tight to open folds. 
F2 warp folds are seen within Tom West and Tom East (Fig. 7). 
The �nal deformation event, F3, results in weak, open buckle folds with a 
steep North-South near-vertical fabric associated. 

Figure 5: Stereographic projections with best �t foliatons and fold axis shown.

Structural mapping has delineated three major deformation events. 

The �rst major deformation event, D1, is de�ned by tight, upright folds but is also seen as 
large open folds. D1 is de�ned by the crest of the Tom anticlinorium where Tom East and 
Tom West are found on opposite limbs of a parasitic antiform West of the crest. Inconsis-
tently seen within mapping units, the dominant orientation of S1 fabrics is 156/83. F1 Fold 
axis dominantly plunging to the south 22 -> 160; it varies to form doubly-plunging struc-
tures. The �rst deformation event is restricted to the Central Block, and furthermore, it is 
only seen East of the Macmillan River in close proximity to the Tom deposit de�ning a 
fourth domain.

The second deformation event, D2, is pervasively developed across the study area. S2 
fabrics have an average orientation of 090/74. F2 folds are upright with shallow to moder-
ately inclined plunge. The average F1 fold axis is 01 -> 281. Undulating buckle folds of the 
Tom deposits are a result of this D2 event.

The last deformation event, D3, is the �nal and weakest event. It is dominated by a planar, 
steeply dipping S3 fabric measuring 026/84. F3 folds are weakly developed open buckle 
folds with wavelengths of one metre oriented 28 -> 202.

Three major fault structures have been identi�ed in the area of the deposit; the Eastern 
fault, Panhandle fault, and the Tom fault. The Eastern and Panhandle faults are near-vertical 
reverse faults dipping to the northeast. The Eastern fault is signi�cant as it is thought to 
truncate and displace the northernmost extent of Tom East. The Tom fault is an extensive, 
vertical, north-trending structure thought to be a post-Cordilleran folding with little local 
movement. 

Strain accommodation varies owing to heterogeneity between rock units. Competency 
contrasts are severe, with highly heterogenous interbeds of siliceous radiolarian rich 
mudstones, chert, carbonaceous mudstones and barite. Less competent rocks, such as 
massive sulphide mineralization and barite lenses, preferentailly accommodate strain 
resulting in severe internal deformation.

                                               East of the Macmillan River and local to the Tom deposit, an early stage of deformation is recog-
nized. The timing of this deformation event (D1) is poorly constrained. Previous regional mapping west of the Macmillan 
river indicate that thrust faulting in the north block cut F2 folding prior to the emplacement of Cretaceous dykes, plac-
ing a minimum age for D2 deformation as Cretaceous (Willms ,et al, 2020).

The relative timing of movement between the Eastern and Tom Faults is poorly constrained. If the Eastern Fault was �rst 
active, it is likely that northern most extent of Tom East has been truncated, uplifted and eroded. Conversely, if the Tom 
Fault was �rst active, the continuation of Tom East may be displaced down to the north, in the subsurface where similar 
stratigraphy and folding occur (Fig 8).

The Panhandle Fault has red pervasive hematite staining of fault gouge and nearby rock units resultant from groundwa-
ter circulation. The fault is exposed at surface over several kilometres. The fault o�sets the 1km thick package of the 
Fuller Lake member to a resultant 300m section to the southeast termed the ‘panhandle.’

The Tom Fault is a near-vertical normal fault and trends almost due north for tens of kilometres. It o�sets both the Tom 
East and Tom West to the south of their extents. Stratigraphic displacements across the fault indicate total displacement 
less than a kilometre. Contrary to previous interpretations, we suggest the Tom Fault is a Cretacous structure unrelated 
to the mineralization at the Tom deposit. 

The timing of the Eastern Fault and Panhandle Fault is poorly constrained. Further investigation is required as the orien-
tation of these faults is similar to regional Devonian structures, diamictite is proximal to the Eastern Fault, and �uid 
movement is spatially associated with the Panhandle Fault. Is it possible that these faults were feeder structures for 
mineralization? 
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