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Purpose of study

This first study of meltinclusions (SMI) in Archean volcanogenic massive sulphide (VMS) systems aims to provide insight into their magmatic evolution by characterizing the chemistry of meltinclusions hosted in zircon. Primary meltinclusions in zircon
hosted in pre-, syn-, and post- VMS ore-related volcanic units will provide compositional constraints on the initial metal/volatile chemistry of the magma before eruption. This will allow a comparison of the precursor metal budgets of magmas that
underwent sulphide saturation, actively degassed, and/or were passively leached, to supply metals to the deposits. Two examples of large VMS deposits, Kidd Creek (KC) and LaRonde Penna (LP), differ greatly in metal tenor and tonnage, in particular
in Au endowment (KC - 149 Mt at 0.05 g/t Au; LP - 88 Mt at 5.07 g/t Au; Galley et al., 2007). A significant aspect of this study is to understand why Archean VMS deposits differ so greatly in metal endowment. It may be related to a difference in the
primary magmatic metal endowment of coeval volcanics of these deposits, and therefore, the “ metal fertility” characteristics of the original source region for the magmas. Studying meltinclusionsis a better approach than bulk rock lithogeochemistry
toresolving this uncertainty for several of reasons: (i) the trace element concentrations, in particular the metal chemistry, gets significantly modified in bulk volcanicrocks when they are subjected to alteration, mineralization and metamorphism, (ii)
melt inclusions provide information about the pre-eruptive/emplacement magmatic metal tenors and volatile contents, and (iii) melt inclusions capture a larger range of magmatic liquid compositions owing to trapping of melts over a prolonged
period of host crystal growth, whereas bulk rocks are end-member (final product) compositions of liquid and crystals at the time of eruption/emplacement. In this study, comparisons of magmatic metal endowment in VMS related volcanics in
different areas of the Abitibi greenstone belt (ABG) will be made using zircon-hosted SMI to gain perspective on the magmatic liquid compositions associated with different periods of the evolution of the Abitibi subprovince bracketing the KCand LP
VMS events. Here, preliminary data for the KC volcanic complex are presented, along with some data from regionally proximal (Tisdale, Kidd Munro, Deloro assemblages) and farfield (Swayze Belt ) volcanic assemblages.
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Host rock and SMI petrography for Kidd Creek

A ‘.\ Bl _ el DR\ Figure 4 - Photomicrographs showing

o : ' zircon (highlighted in red boxes) hosted
in quartz porphyry actinolite, quartz
feldspar, porphyrytic rhyolite from the
KCminein (A) plane-polarized light and

(B) crossed-polarized light.

Figure 5 - Photomicrographs (transmitted light)
of inclusion-bearing zircons from the KC VMS
deposit (sample KC102), containing (A—B)EIﬂ
E]
spherical-, and irregular-shaped SMI; (C-D)
spherical- to irregular-shaped SMI occurring
with needle-like apatite inclusions; (E-F)
spherical-shaped, opaque sulphide inclusions.
Abbreviations: Ap = apatite; SMI = silicate melt
inclusion; Sl =sulphide melt inclusion.

Figure 3 - Representative images of polished hand samples of SMI-bearing lithologies
from the KC VMS deposit. (A) Sample 2100-16-20, hanging wall quartz-porphyry; (B)
Sample HG-1700-3, hanging wall quartz-porphyry; (C) Sample EO-13, footwall
rhyolite; (D) Sample EO-92-5, footwall rhyolite; (E) EO-92-14 footwall rhyolite.

Inventory of zircon-hosted inclusion types

Figure 6 - Scanning electron microscope (SEM-BSE)
images of melt, mineral and sulphide inclusions
exposed on the surfaces of zircon crystals from
various samples studied to date. (A) BSE image

Table 1 - Summary of the types (SMI, sulphide, mineral) of inclusions hosted in zircon from various sample lithologies from (A)
KC, (B) K-M, (C) T, (D) Upper D, (E) RPand (F-N) SB.
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Bulk SMI composition Host zircon chemistry Summary and future work
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