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The fluid and metal source for gold deposits, especially Archean-aged, is highly debated.

Metamorphic devolatilization is a prevailing model:
 • Supracrustal rocks experience dehydration reactions during prograde metamorphism
 • Au-bearing phases (sulfides) break down and Au can be mobilized as S species
 • Carbonates break down and release CO2 in the fluid
 • Vertical structures (shear zones) allow focus and transport of fluid  

This process can be investigated with petrology, chemistry and phase equilibira modeling:
 • A quantitative pressure-temperature-composition approach (P-T-x)  

The Quetico subprovince, northern Ontario (Superior Province):
 • ~2.7 Ga metasedimentary belt dominated by turbiditic wacke
 • >1200 km strike-length across the western Superior craton

CONTEXT

FLUID EVOLUTION

(1) The sequence of metamorphic isograds is continuous across long axis of the Quetico, 
mirrored on northern and southern margins: similar tectonic evolution along both boundaries.    

(2) P-T path follows a moderately high PT gradient, followed by sharp, rapid decrease in P: 
burial followed by isothermal decompression (diapiric rise of the Quetico core?).

(3) Peak fluid release occurred at around 500 °C, 6 kbar with a high XCO2 composition: fluid 
pH is buffered via bicarbonate equilibria, necessary for having Au in solution.

(4) Sulphide phases partially break-down continuously along P-T path: a small amount of H2S 
is released into fluid; Au in sulphides may be exposed to fluid, potentially mobilised with a S 
species(?)

GARNET CHEMISTRY ISOPLETH THERMOBAROMETRY
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Garnets from the Grt zone show a core-to-rim increase in Fe (almandine) and Mg (pyrope) 
and a decrease in Mn (spessartine) and Ca (grossular). 

Garnets from Crd and Sil zone similar zoning profiles, apart from Mg (core-to-rim decrease).   
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Isopleths have a closest inter-
section at ~600 °C and 4 kbar.
 • Near the Grt-St-Crd-Bt 
field (observed)
 • Near And-Sil univari-  
ant reaction

Zoning patterns in garnet are 
compatible with growth along a 
decreasing P/T gradient
 • Near-isothermal decom- 
pression over >3 kbar
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Fluid production is investigat-
ed along an inferred P-T 
vector of 400 °C (5 kbar) to 
600C (7.5 kbar). 

At 400 °C, 5 kbar, calcite, 
chlorite, white mica, K-feld-
spar pyrite, and pyrrhotite are 
stable.
 • Fluid is initially set to
 1 vol% (1.27 mol)   
 • Fluid composition is 
98.98% H2O, 1.00% CO2, and 
0.03% H2S 

At 505 °C, 6.3 kbar: calcite, 
chlorite and white mica break-
down; biotite and garnet are 
produced.
 • Peak fluid production 
 • Fluid composition is 
62.65% H2O, 37.27% CO2, 
and 0.1% H2S
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Field and GIS analysis
 • Compilation work: historical mapping, whole-rock, and geochronological data
 • Transect-style isograd, structural, and stratigraphy mapping (~600 outcrops) 

Thin-section and whole-rock analysis
 • Optical microscopy: mineral assemblages and textures
 • Scanning electron microscopy (SEM) and energy dispersive spectrscopy (EDS): mineral 
mapping and zoning profiles
 • Electron probe micro analysis (EPMA): mineral chemistry
 • Whole-rock chemistry by multivariate analysis: inductively coupled plasma optical emis-
sion/mass spectrometry for major and trace elements (ICPOES/ICPMS) and combustion fur-
nace infrared spectrometry for H,C, and S.

Phase equilibria modeling 
 • Thermobarometry: pressure temperature (P-T) phase diagrams (pseudosections); isopleth 
convergence (solid solution mineral compositions); pure H2O fluid.
 • Fluid evolution: composition-gradient (X-TP) phase diagrams; mixed H-O-C-S fluid, fixed 
fluid moles with stepwise fractionation   

SUMMARY AND IMPLICATIONS
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Fig. 1. A) Geological map of the study area in the central Quetico subprovince compiled from new and historical (Ontario Geological Survey) mapping. The legend and map units outside of the study area (whitened for clarity) are from (Mon-
tsion et al., 2018). B) Map of Superior Craton, Canada, with subprovince types: sedimentary (light grey), plutonic (grey), and volcanic (dark grey) (after Stott et al., 2010).

ADRIAN G. REHM¹, ANTOINE GODET², DOUG TINKHAM¹ and CARL GUILMETTE³

Four groups of metasedimentary 
rocks are idenitified, based on min-
eral assemblages (+Ilm, Py, Po):

Pelite: Qz- and Pl- poor; Grt, Bt ± 
Ms, St, And, Crd, Sil, Opx

Semipelite: Qz- and Pl- rich; Bt ± 
Ep, Ttn, Grt, Crd, Opx

Calc-semipelite: Qz- and Pl- rich, 
Amp, Bt, ± Ep, Ttn, Grt, Opx

Mafic sediment: Qz- and Pl-poor, 
mainly Amp

PROTOLITHS

Fig. 3. Photomicrographs of meta-
sedimentary rocks representing dif-
ferent protolith types in the Quetico. 
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METAMORPHIC ZONES
Metamorphic zones defined by the first or last appearance of rock-forming minerals in pelitic 
rocks (isograds):
   • Chlorite-white mica (Chl-WM)
   • Biotite (Bt)
   • Garnet (Grt)
   • Staurolite-andalusite (St-And)
   • Cordierite (Crd)
   • Sillimanite (Sil)
   • Melt (Liq)
   • Orthopyroxene (Opx)In
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Fig. 2. Representative field photos of metasedimentary rock progressively metamorphosed through the different zones.
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Fig. 4. Scanning electron microsope energy dispersive spectoscopy (SEM-EDS) element maps of a zoned garnet in 
the garnet zone (top) and sillimanite zone (bottom) with electron probe microanalysis (EPMA) transects showing 
end-member garnet chemistry. 
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Xgrossular Fig. 5. Pseudosections in the MnNCK-
FMASHTOS system using whole-rock 
bulk compositions. Isopleths representing 
ranges in data from EPMA spot analyses. 

Fig. 6. Phase equilibria modeling of 
a semipelite in the MnNCKFMASH-
TO-CS system along a fixed P-T 
gradient from 400C (5kbar) to 600C 
(7.5 kbar). Fluid composition is itter-
atively removed from the bulk every 
0.4°C (500 steps) to maintain nfluid = 
1.27 mol.   

WHOLE-ROCK CHEMISTRY
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Principal component analysis (PCA) shows the opposing covariance of K-Y-Fe and Ca-Na-Si 
best describes the observed variability in pelitic compositions.
 • Mechanism: hydraulic sorting of phyllosilicates and plagioclase-quartz crystals 

H2O decreases continuously with increasing grade; CO2 decreases sharply near Bt isograd; 
SO2 is not visibly affected.
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Fig. 6. A PC1-PC2 biplot of sedimentary rocks in the 
Quetico including new (full circles) and historical (empty 
circles) whole-rock data. 

METHODOLOGY
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Fe Mg Ca

Fe Mg Ca

Garnet zone

Isopleths have a closest inter-
section at ~560 °C and 7 
kbar
 •  In the Grt-Chl-Bt field 
(observed assemblage)

Zoning patterns in garnet are 
compatible with growth during 
increasing P-T (~20 bar/°C) 
followed by a sharp P-T de-
crease
 • Clockwise P-T path
 • Burial followed by   
decompression
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