Acquisition and processing of gravity data for the Metal Earth project

Maleki, A.¹, Smith, R.¹, Eshaghi, E.¹, Altwegg, P.²

¹ Harquail School of Earth Science, Mineral Exploration Research Centre, Laurentian University, Sudbury, Ontario, ² MIRARCO, Laurentian University

INTRODUCTION

The Metal Earth project aims to understand the underlying geological mechanisms that differentiates highly mineralized zones from poorly mineralized ones in Precambrian Rocks in the Canadian Shield. Geophysical prospecting methods such as reflection seismology, magnetotellurics, and gravity, as well as geological observations, have been or will be acquired along selected transects perpendicular to the geological strikes directions in the Abitibi and Wabigon areas. The Metal Earth project contains a total number of 13 transects. So far, we have contributed to the Metal Earth project via collecting and processing of gravity data across the Rouyn-Noranda (~93 line km), Amos-Malartic (~88 line km), and Chibougamau (~128 line km) transects.

DATA ACQUISITION

The two geophysical crews acquired a total number of 1066 gravity observations during the first field season of the project, along the above three measured gravity transects from 23rd of June to 25th of August 2017. The average spacing between observations is ~300m. The stations were measured gravity transects from 23rd of June to 25th of August 2017.

DATA PROCESSING

The first step in field processing of the gravity data was to check for drift errors. Drift has been defined as the difference between the readings at the control points at the start and end of the day. These drifts were interpolated to the time that data was acquired at each station and used to correct for the drift of the instrument at that station.

The positional data from the differential GPS processing was then associated with each gravity reading. Therefore, each record consisted of station number, easting, northing, height and time from an internal GPS system to calculate an earth-tide correction. Subsequent field processing of the gravity data at each station follows the flowchart in Fig. 2, and the complete Bouguer anomaly calculated as follows (Nowell, 1999):

\[ BA = G - \text{FA} - \text{BC} + \text{TC} - G_{\text{err}} \]

ACKNOWLEDGEMENTS

In the gravity data acquisition, a total number of 1066 gravity observations have been acquired, controlled and the complete Bouger Anomaly has been calculated to compile an initial database. In addition, acquired gravity data will be combined with existed magnetic grids to perform seismically-geologically constrained 2D integrated modelling.

REFERENCES
