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Summary 
 

Magnetic susceptibility, density, and gamma ray counts are 

three physical properties measured within a hole drilled at 

Victoria property, were used to identify rock types. The 
fuzzy k-means clustering algorithm was used to divide the 

data into different clusters, each of which represented a rock 

group with similar physical properties characteristics. The 

number of clusters reveals the number of rock groups which 
are identifiable based on physical properties measurements. 

Characterization of physical properties of rocks within the 

hole will help to modify the geological model and plan 

further exploration activities.   
 

Introduction 

 

In recent years the number of exposed deposits has 
decreased significantly; consequently, exploration 

companies are transitioning from surface-based exploration 

to subsurface exploration. Therefore, geophysics becomes 

an important tool to explore below the surface in exploration 
activities (Smith et al., 2012; Williams, 2008). Geophysical 

data can be used to infer the physical properties of the rock 

mass, so they can sometimes be used to predict the rock type. 

Knowing the links between the physical properties and the 
geology is potentially useful for defining geological zones at 

depth (Perron et al., 2011). This approach is more likely to 

succeed when physical rock property contrasts exist between 

the different lithological units (Mwenifumbo and 
Mwenifumbo, 2012; Perron et al., 2011).  

 

One approach is to use borehole geophysics to measure 

multiple physical properties down the hole (Killeen et al., 
1997).  Multi-probe in-hole measurements can be used to 

acquire a large amount of data rapidly; in addition, they are 

typically sensitive to a larger volume than the core 

(McDowell et al., 1998; Granek, 2011). The measured 
physical properties are numerical data that can be analyzed 

mathematically to extract patterns of variation of physical 

properties that could be related to different geological units. 

To reduce the subjective bias in interpretation and to 
quantitatively link the geological and geophysical data, 

pattern recognition techniques can be used. Classification 

methods, both supervised and unsupervised, are commonly 

used for classifying rock types and identifying alteration 
zones (Granek, 2011; Williams and Dipple, 2007). 

 

This study seeks to determine if the physical properties can 
be used to distinguish different types of host rock at the 

Victoria Ni-Cu property operated by KGHM International. 

Gamma ray counts, magnetic susceptibility, and density 

measurements were acquired in hole FNX1182, down to 
1700 meter depth.  The fuzzy k-means clustering technique 

is used to analyze this data and group the rocks in terms of 

their physical properties.  

 

Geological setting 

 

The Victoria property is located at the west part of the south 

range of the Sudbury Igneous Complex (SIC) where the SIC 
intersects the Worthington Offset Dyke. The northern 

margin of the property is dominated by the norite and norite 

breccias. Cyclical repetitions of sedimentary sequences with 

felsic and mafic volcanic rocks and gabbroic intrusives 
comprise the footwall rocks. Quartz diorite offset dykes 

intrude the area and are faulted in a complex manner. There 

is Cu-Ni-PGE mineralization at Victoria, which is mainly 

hosted by quartz diorite and re-crystalized Sudbury breccia 
(Perron et al., 2011). 

 

Physical properties 

 
The gamma ray response, magnetic susceptibility, and 

density were measured down hole FNX1182 with a vertical 

resolution of 20 cm. Each tool measured the physical 

property at slightly different depth, so a weighted average of 
measurements were computed every 20 cm to obtain 

measurements at consistent depths. Because there is high 

frequency variation in the physical properties, the data were 

filtered using a low-pass filter to increase the signal-to-noise 
ratio.  The average and standard deviation (std) of each 

physical property is summarized in Table 1 for each rock 

type identified by the geologist. Figure 2 also shows the 

physical properties logs and rock types identified by 
geologists.  

 

The gamma ray measurements plotted on Figure 2 are highly 

variable in the hole. The quartz diorite (QD) unit is 
characterized by gamma-ray values that do not change 

significantly. However, the values are significantly less 

within the meta-gabbro (MTGB) and meta-basalt (MTBS). 

The peaks at approximate depths of 1280, 1380, and 1520 m 
reflect high gamma ray response of quartzite (QTZT) and 

meta-sediments (MTSD). 
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Clustering of down-hole physical properties measurement to characterize rock units 

The magnetic susceptibility log shows anomalous behavior 

in the diabase (DIA) and sulphide (SULP) zones, where 
sharp peaks characterize DIA and a zone of strong and 

erratic variation characterizes SULP. The rest of the log does 

not show significant variation.  

 
The density log characterizes the QD as relatively low 

density and low variability, while MTBS and MTGB show 

higher density. QTZT and MTSD show anomalously low 

values on the density log. A maximum peak in the log 
corresponds to the SULP zone at depths between 1500 to 

1530 m depth. 

 

Table 1: Mean and std of magnetic susceptibility, density and 

gamma measurements within FNX1182, (SUBX: Sudbury breccia, 

PYRT: pyroxenite; other codes explained in text or on Figure 2) 

Rock 

type 

Log MS 

(10-3×SI) 

Density 

(g/cm3) 

Gamma  

(API) 

QD 1.173 ± 0.028 2.866 ± 0.066 90.1 ± 25.4 

MTGB 1.191 ± 0.038 3.027 ± 0.078 58.9 ± 36.4 

MTBS 1.170 ± 0.043 3.013 ± 0.114 62.5 ± 62.0 

MTSD 1.141 ± 0.056 2.914 ± 0.189 155.5 ± 115.4 

SUBX 1.169 ± 0.021 2.881 ± 0.139 146.1 ± 103.4 

QTZT 1.146 ± 0.115 2.878 ± 0.257 200.1 ± 80.3 

DIA 1.325 ± 0.296 2.980 ± 0.042 54.3 ± 16.3 

SULP 1.218 ± 0.196 3.080 ± 0.227 84.7 ± 31.3 

PYRT 1.197 ± 0.038 2.990 ± 0.096 60.7 ± 32.7 

Total 1.177 ± 0.057 2.940 ± 0.125 83.5 ± 57.9 

 

Fuzzy k-means clustering 

 
Clustering is an unsupervised classification technique in 

which data are divided into clusters based on the variables 

measured at each data point (Lofts, 1993; Rabaute et al., 

1997). The fuzzy clustering algorithm allows data points to 
belong to more than one cluster and the degree of 

membership of each datum to each cluster is defined as a 

membership value: the higher the membership value, the 

more strongly the datum belongs to the cluster (Zadeh, 1965 
and Ruspini, 1969).  

In fuzzy k-means clustering n data are divided into k clusters 

based on v variables.  The fuzzy membership value of datum 

ith datum, mik, i=1,…,n; k=1,…,p) is obtained through 
minimization of the objective function J: 

 

𝐽 = ∑ ∑ 𝑚𝑖𝑘
∅

𝑝

𝑘=1

𝑛

𝑖=1

𝑑𝑖𝑘
2  

 

𝑑𝑖𝑘
2 = ∑(𝑥𝑖𝑣 − 𝑐𝑘𝑣)2

𝑞

𝑣=1

 

 

where data are represented as vectors xi which is the vector 

of nth data. Each vector is composed of v elements and xiv is 

the value of the vth variable measured at the ith datum.  The 

fuzzy exponent is represented by ϕ. The term c represents 

the position of the centroid of the cluster. It is a vector with 
v elements so that ckv is the average of the vth variable of all 

the points weighted by their degree of membership to cluster 

k. The term dik represents the distance between the ith data 

and the centroid of the kth cluster (Bezdek, 1981; McBratney 
and DeGruijter, 1992). Initially fuzzy membership values of 

data are randomly assigned between 0 (lowest membership) 

to 1 (highest membership) and the total of membership 

values for each data are conditioned to be 1. The fuzzy 
membership values are recalculated to minimize the 

objective function. As a result, the centroid of clusters is 

relocated when the fuzzy membership values change. 

Therefore, a new vector of centroids are used in the objective 
function each iteration. This procedure continues until the 

objective function is minimized. So, the membership values 

for each datum and the position of centroids of clusters are 

the outputs of the algorithm. Finally, each datum belongs to 
the cluster for which it has the highest membership value 

(Bezdek, 1981; McBratney and DeGruijter, 1992; Rabaute 

et al., 2003).   

 
Prior to running the algorithm, two parameters need to be 

assigned: the optimal number of clusters and the fuzzy 

exponent. The optimal number of clusters is determined 

based on prior knowledge and minimization of three 
functions, fuzzy performance index (FPI): 

 

𝐹𝑃𝐼 =
1 − (𝑝 × 𝐹 − 1)

𝐹 − 1
,          𝐹 =

1

𝑛
∑ ∑(𝑚𝑖𝑘

∅ )2

𝑝

𝑘=1

𝑛

𝑖=1

 

 

modified partition entropy (MPE): 

 

𝑀𝑃𝐸 =
𝐻

𝑙𝑜𝑔𝑝
 ,            𝐻 = −

1

𝑛
∑ ∑ 𝑚𝑖𝑘𝑙𝑜𝑔(𝑚𝑖𝑘

 ) 

𝑝

𝑘=1

𝑛

𝑖=1

 

                                      

where H represents the entropy function, and finally, the 
separation distance (S):  

 

𝑆 =
𝐽

𝑛 (𝑑𝑚𝑖𝑛)2
 

 
where dmin is the minimum distance between cluster 

centroids. Minimization of these parameters results in a 

maximization of compactness and separation of clusters 

(Roubens, 1982 and Xie and Beni, 1991). 
 

The fuzzy exponent determines the degree of fuzziness 

which represents the compactness and separation of final 

clusters. This value can be assigned between 1 and infinity 
so that larger value results in higher fuzziness in the final 

clustering. Due to the nature of physical properties data and 

their contrast in different rock types, 2 was chosen as a 
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Clustering of down-hole physical properties measurement to characterize rock units 

proper value for the fuzzy exponent (Bezdek, 1981; 

DeGruijter and McBratney, 1988; Rabaute et al., 2003).  
 

Data Clustering 

 

Data were analyzed statistically to remove any unrealistic or 
missing data. The clustering technique requires the data to 

be normalized and standardized between 0 and 1. Therefore, 

the logarithm (to the base 10) of the magnetic susceptibility 

and the gamma-ray data were used in the analyses. The 
program FUZME2.1 (Minasny and McBratney, 2000) was 

used to classify the data. The program requires the number 

of clusters and the value of the fuzzy exponent for fuzzy 

analysis. The optimal number of cluster was determined to 
be 3 as all three mathematical functions discussed above 

show minimum peak for three clusters (Figure 1). 

 

 

 

Figure 1- FPI, MPE, and S plots were used to determine the optimal 

number of clusters 

 

Results 

 

Data vectors at each depth are classified into the three 
clusters based on their fuzzy memberships of the three 

clusters. The result of clustering is shown in Figure 2. 

Physical properties logs, clusters, and rock types defined by 

geological logging are also shown in the plot. The 
percentage of contribution of rock types in different clusters 

are represented in Table 2. Clusters are described by their 

centroids and standard deviation. The centroid represents the 

weighted average of physical properties of the cluster and 
the standard deviation is a measure of the scatter of the data 

points in the cluster. Clusters are statistically characterized 

in the Table 3.  

 

Figure 2- Gamma ray, magnetic susceptibility, density logs, rock 
groups and clusters within FNX1182 are shown in last two columns. 
 

Table 2-Percentage of each rock type classified in three clusters 

 Cluster1 Cluster2 Cluster3 Total Length (m) 

QD 98 1 1 756 

MTGB 19 0 81 375 

MTBS 10 7 83 356 

MTSD 5 44 51 88 

SUBX 43 32 24 38 

QTZT 13 75 13 34 

DIA 0 0 100 19.5 

SULP 29 0 71 15 

PYRT 33 0 67 13 

UM 100 0 0 3.57 

 

Table 3- Average and standard deviation of physical properties in 

each cluster 

Centroids Log MS 

(10-3×SI) 

Density 

(g/cm3) 

Gamma 

(API) 

Cluster1 1.174 ± 0.030 2.874 ± 0.073 91.3 ± 24.8 

Cluster2 1.142 ± 0.037 2.784 ± 0.122 253.1 ± 75.9 

Cluster3 1.185 ± 0.079 3.045 ± 0.095 48.3 ± 28.0 

Total 1.177 ± 0.057 2.940 ± 0.125 83.5 ± 57.9 
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Clustering of down-hole physical properties measurement to characterize rock units 

QD and UM were grouped together in Cluster 1 which 

represents relatively medium MS, density, and gamma ray 
response. UM represents high MS and low gamma which 

matches cluster 3, but the density of UM and QD are close 

together, which results in UM being grouped in cluster 1. 

The SUBX, PYRT, and SULP rock groups are partly 
classified into cluster 1.    

 

Low MS, low density, and high gamma characterize cluster 

2 in which QTZT is a dominant rock group, although MTSD 
and SUBX are present as a smaller population. The mixed 

membership of these rock types probably reveals the 

heterogeneity of MTSD and SUBX.  

 
Cluster 3 comprises DIA, MTBS, MTGB, SULP, and 

PYRT. To lesser degree, MTSD and SUBX are partly 

grouped in cluster 3. High MS, high density, and low gamma 

ray are characteristics of cluster 3. MTGB and MTBS, the 
two most populous rock groups in cluster 3, are similar in 

density, gamma, and MS.  

 

From the perspective of homogeneity, the UM, QD, MTGB, 
MTBS, DIA, QTZT, and to a lesser degree SULP and PYRT 

are homogenous rock groups which are dominantly (more 

than ~70%) grouped in one cluster. On the other hand, 

SUBX (present in three clusters) and MTSD (present in two 
clusters) are the two most heterogeneous rock groups in the 

hole. Histograms of density measurements within QD and 

SUBX units in Figure 3 demonstrate their homogeneity and 

heterogeneity, respectively.   
 

 

 

Figure 3- Histograms of density measurements within 

QD (top) and SUBX (bottom). 

 

 Conclusion 

 
Comparison of rock type and clustering results illustrates 

that the fuzzy k-means clustering is a reliable algorithm to 

analyze physical properties measurements to identify rock 

types. A higher contrast in the physical properties of rocks 
enhances the certainty of the results. Clustering of physical 

properties provides a simplified geological model in which 

units with distinct physical properties are represented. At 

Victoria, three clusters describe the physical behavior of 
rock groups within the hole FNX1182. Such a simplified 

model can be used to modify the current geological model 

and plan further physical properties studies in Victoria 

property or other sites with a similar geological setting.   
 

In some cases, physical properties manifest subtle difference 

in one rock type, which can result in a modified and more 

precise understanding of that rock type than provided by 
geologists. The observed heterogeneity of magnetic 

susceptibility and density in MTSD can be related to the 

magnetite content in the rock. Of the three physical 

properties used in this research, density and gamma ray 
measurements provided the most valuable information in 

clustering. We feel that the magnetic susceptibility can be 

used more effectively to detect sulfides, mineralization or 

alteration zones.  
 

In the clustering process, those rock types with homogenous 

physical properties and more common rock types were 

dominantly grouped in unique clusters (e.g. QD); whereas, 
rock types with heterogeneous physical properties were 

divided into different clusters (e.g. MTSD). Different rock 

types with similar physical properties were clustered 

together (e.g. MTBS and MTGB). Not populous rock types 
usually are grouped with dominant rock types in a cluster 

which does not represent its physical properties because 

cluster characteristics are strongly controlled by more 

populous rock types. 
 

The clustering produces a data dependent classification of 

the lithology. This provides geologists with another dataset 

that they can compare with their classification. By observing 
discrepancies and anomalies between the geological and 

statistical classification the attention may be drawn to 

specific locations, perhaps warranting more detailed study. 

This will help in understanding the geology and looking for 
mineral deposits. 
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