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The reliability of rock-type prediction using down-hole density, gamma ray response, andmagnetic susceptibility
measurements was evaluated at the Victoria property, Sudbury, ON. A supervised neural network, trained using
lithological information from drill hole FNX1168, yields a predictive accuracy of 83% for the training data. Apply-
ing the trained network on drill hole FNX1182 resulted in 64% of the rock types being correctly classified when
compared with the classification produced by geologists during logging of the core. The homogenous rock
types, like quartz diorite, had a high accuracy of classification; while the heterogeneous rock types such as dia-
base were poorly classified. Overlap between physical properties of rock types caused by heterogeneity or inher-
ent similarity in physical properties of rock types, which were verified by observing the cores, accounts for most
of the misclassification. To reduce the misclassification, the network was trained from physical log units in
FNX1168 derived from clustering of physical propertiesmeasurements. Four physical log unitsmainly represent-
ed four groups of rocks: i) quartz diorite; ii)metabasalt andmetagabbro; iii)metasediment and quartzite; and iv)
sulfide and diabase. The predictive accuracy in the training process rose to 95%. The trained network then was
applied to predicting the physical log units in FNX1182. Given the relationships between physical log units and
rock types from FNX1168, the results of physical-log-unit classification in FNX1182were interpreted from a geo-
logical point of view. Although in ideal cases we would like to be able to extract the same classification that a ge-
ologist provides, the extraction of physical log units is a more realistic goal. The interpretation of the lithological
units from the physical log units can be compared with the geologist's classification and discrepancies or anom-
alies analyzed in greater detail.
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1. Introduction

Typically when a hole is drilled, a geologist will look at the core ex-
tracted and classify the lithology or rock type as a function of depth
down the hole. Rock type prediction based on log data from down-
hole geophysical measurements can be considered as a potential alter-
native to a geologist's log when the cores are not fully recovered such
as ocean drilling or drilling methods which do not provide cores such
as percussion drilling in mineral exploration (Benaouda et al., 1999
and Qi and Carr, 2006). Physical properties logging provides a continu-
ous set of data down the hole, which can be effectively used to improve
the understanding of the geological characteristics of the hole (Killeen,
1997; McDowell et al., 1988; Granek, 2011). The accuracy of rock-type
characterization based on physical properties is proportional to the ex-
istent contrast of these data between rock types (Perron et al., 2011 and
Mwenifumbo andMwenifumbo, 2012). But, similarity of physical prop-
erties of rocks and the heterogeneity of the rock increases the overlap
oodi), rssmith@laurentian.ca
between physical properties of different rocks (Rabaute et al., 2003;
Garcia et al., 2011). Overlap of physical properties between two rocks
brings confusion to the prediction of rock types. We feel that it is
more realistic to classify them as physical units. The term “physical log
units” can be described as homogenous intervals of one or more rock
types with consistent physical properties. The link between physical
units and rock types can help geophysical studies to gain a better under-
standing of the geological setting (Benaouda et al., 1999 and Perron
et al., 2011).

Conventional statistical techniques such as using histograms, box
and whisker plots, cross plots, or the analysis of average and variance,
were employed by Reed et al. (1997); Killeen (1997); McDowell et al.
(1988, 2004), and Vella and Emerson (2009) to extract the pattern of
variation in physical propertiesmeasurements and relate them to a geo-
logical setting. Recently, the multi-variable pattern recognition tech-
niques have become popular, since the conventional methods were
limited in terms of the number of variables, and their ability to establish
a quantitative relationship between physical properties and a geological
setting (Rabaute et al., 2003; Qi and Carr, 2006; Williams and Dipple,
2007; Garcia et al., 2011 and Granek, 2011). Supervised classification
techniques can be used when the goal is to predict rock types based
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on the physical properties measurements. As the term ‘supervised’ im-
plies, a drill hole or parts of a hole with both physical properties mea-
surement and rock type information are used to train the classifier,
and then the trained classifier can be applied to a new hole or those
parts lacking the core to predict the rock types (Benaouda et al., 1999
and Qi and Carr, 2006).

Varying composition of rock types, structures, alteration andminer-
alization cause non-linear variation in physical properties, which jus-
tifies using a non-linear classifier to analyze these data. The neural
network is a robust non-linear classifier successfully applied to down-
hole logging data (Ojha and Maiti, 2013). Baldwin et al. (1990); Wong
et al. (1995); Farmer and Adams (1998); Qi and Carr (2006) and Maiti
et al. (2007) used the neural network to predict lithofacies based on
down-hole physical properties measurements. In these works a quanti-
tative relationship between numerical well log data and core descrip-
tion is simulated by the neural network, then the network is applied
to the uncored wells or parts of the well lacking the core to predict
lithofacies. The application of a neural network was introduced to the
Ocean Drilling Program by Benaouda et al. (1999) and Ojha and Maiti
(2013). They used the neural network to classify down-hole physical
properties measurement to predict lithology where there is partial or
zero core recovery along the hole. All of the above mentioned works
have been applied in the sedimentary environment, and the prediction
was considered fairly successful. Application of this method to the igne-
ous andmetamorphic environments like the Victoria propertymight be
complicated as they are more complex than sedimentary environments
due to the structural metamorphic and intrusive history.

In this research, the main objective is to compare the reliability of
representing the physical properties measurements in the form of
rock types and physical log units. As a first step, a neural network
trained fromphysical properties and geological logging information col-
lected in hole FNX1168 was used to predict the rock type in hole
FNX1182. If the network was trained on the data from more than one
hole, better results might be obtained, but our purpose is to test the ef-
ficacy of neural networks early in the exploration process when less
data are available. The predicted rock types in FNX1182 are compared
with actual rock types logged by geologists to evaluate the accuracy of
the classification in the context of an igneous and metamorphic envi-
ronment. With the physical properties measurements available to us,
we demonstrate below that this is only moderately successful. Then
rather than using the geologists' classification of rock units for training,
we used physical log units in FNX1168 determined by fuzzy k-means
clustering (Mahmoodi and Smith, 2015). The trained neural network
was then used to predict physical units in FNX1182, with greater suc-
cess. Considering the relationship between physical units and rock
types is known for FNX1168, the predicted physical units of FNX1182
can be interpreted from a geological point of view. Finally, we discuss
whether to represent down-hole physical properties measurements;
in the form of rock type or physical log units.

2. Methods

The neural network is structurally comprised of an input layer, at
least one hidden layer, and an output layer. Each layer has different
numbers of neurons. Neurons of two adjacent layers are connected
one-by-one by synaptic weights. The schematic structure of a simple
three-layer neural network is shown in Fig. 1. The input data are repre-
sented as a data vector to the input layer. The number of neurons in the
input layer equals the number of variables measured at each depth (in
our case three, gamma-ray response, density and magnetic susceptibil-
ity). The number of output neurons is determined by the number of el-
ements of the target vector; which is the number of classes in the
classification problems (in our case seven rock types). The hidden neu-
rons are computing elements of the network, which use transfer func-
tions to generate the output. The input of a hidden neuron is a
summation of bias and neurons in the previous layer multiplied by
corresponding synaptic weights. Biases allow the activation function
to shift to the right or left to give a desired output (Bishop, 1995;
Duda, 2001; Theodoridis and Koutroumbas, 2003 and Beale et al.,
2001). In multilayer networks, the sigmoid function shown in Fig. 1 is
often used as the transfer function (Beale et al., 2001). There is no rigor-
ous theoretical method available to choose the number of hidden layers
and hidden neurons, and they are often determined subjectively based
on trial and error. The most compact structure with acceptable perfor-
mance is preferred for computational efficiency. Most classification
problems can be solved by the network when one hidden layer is
used. With increase in the complexity of the relationship between
input and desired output on the training data, the number of the hidden
neurons should increase (Lawrence et al., 1996; Wong et al., 1995 and
Beale et al., 2001).

The initial weights are randomly assigned to start the training pro-
cess. The main task in network training is to adjust the weights to min-
imize the error of the network. The error function for each iteration is a
form of the difference between the actual network output and the de-
sired or target output. Here, mean square error (mse) is described as
the error function:

J ¼ mse ¼ 1
N

XN

i¼1

eið Þ2 ¼ 1
N

XN

i¼1

ti−aið Þ2 ð1Þ

where t and a represent desired and network output respectively for
each neuron of the output layer for N training data. In our case N is the
number of depths that physical properties are measured at. A gradient
descent is an optimization method which is used to adjust the weights
in the direction throughwhich themost rapid decrease in error function
is achieved. The adjusting term (Δωj

r), which is added to the jthweight of
the rth layer weight after iteration, is obtained by the derivative (gradi-
ent) of the error functionwith respect to theweight. To enhance optimi-
zation efficiency, this value is multiplied by a learning rate (lr). The
learning rate which is greater than zero and smaller than or equal to 1
controls the speed of the convergence process and how much the
weights and biases can be modified at each iteration. The new estimate
of the weight ωj

r
(new) is described as:
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whereωj
r
(old) is the current weight, Δωj

r is the adjusting term, and lr
is learning rate. The network with adjusted weights generates a new
output set, and the process iterates (each iteration referred to as one
epoch) until the termination criteria is fulfilled. Different criteria have
been suggested to terminate the iterations, such as a threshold for the
minimumperformance function (cost function), theminimumdecrease
in the cost function in successive iterations, and the number of valida-
tion checks, which is the number of successive iterations that the cost
function fails to decrease (Bishop, 1995; Benaouda et al., 1999;
Theodoridis and Koutroumbas, 2003 and Beale et al., 2001).

The training data set must be sufficiently large to provide enough
data to train and test the network. The data set is typically randomly di-
vided into three parts for training, validation, and testing, constituting
70, 15, and 15% of the available data, respectively. Testing data are
used to assess generalization of the trained network which determines
capability of the network to be efficiently applied to newdata. If the net-
work keeps iterating and adjusting the parameters to minimize the
error, the network starts to over-fit the training data. Over-fitting occurs
when the network, irrespective of generalization, tries to minimize the
error of training data. In this case, the impact of random noise is incor-
porated into thenetworkweights; however, the error in testing and val-
idation rises. Validation data is used to assure that the division of data is
appropriate. If the errors of testing and validation data are significantly
different, it indicates poor data division (Bishop, 1995; Benaouda et al.,



Fig. 1. The structure of a three-layer neural network. The well log data are presented to the input layer as vectors where Xi represents the ith variable in an input data vector. Each input
neuron is connected to neurons of the hidden layer by synaptic weights. Summation of input neuronmultiplied byweights with bias added are fed to hidden neurons, a1 to aj represented
by sigmoid function. The hidden neurons produce output which is input for the output layer. The sigmoid function, used as a transform function, is shown in the bottom of the figure. The
bias neurons of the kth layer are shown as θk. The output layer has k neuronswhich is equal to the number of classes in the target vector. In the training process, the network parameters are
adjusted in an iterativemanner to minimize the difference between the output of network and the target vector (Reprinted from Deep-Sea Res. II, Ojha andMaiti, Sediment classification
using neural networks: An example from the site-U1344A of IODP Expedition 323 in the Bering Sea, Copyright (2013), with permission from Elsevier).
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1999; Theodoridis and Koutroumbas, 2003; Qi and Carr, 2006 and Beale
et al., 2001).

The MATLAB neural network toolbox was used to train the network,
and then predict rock types and physical log units. The training process
was carried out with 1000 iterations, 10 validation checks, a learning
rate of 0.01, and a minimum gradient of 1 × 10−5, as well as a perfor-
mance goal of 0.03 for rock type prediction. These parameters are sug-
gested by Lawrence et al. (1996) to avoid overfitting the network. A
performance goal of 0.001 was used for physical unit prediction to
take a longer time to train the network.
3. Data set used

The neural networks are not capable of extrapolating accurately be-
yond the range of data; hence, training and new data should have the
same range (Beale et al., 2001). Therefore, training data and new data
should be collected from one drillhole or a different hole drilled in the
area with a similar geological setting. This will guarantee the consisten-
cy of the physical properties of the rocks and their relation to the rock
type in the two datasets. In the current work, density, gamma-ray re-
sponse, and magnetic susceptibility measured within FNX1168 and
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FNX1182 drilled at the Victoria property were used. Fig. 2 shows the lo-
cation of FNX1168 on the geological map of the Victoria property.
FNX1182 is located to the north beyond the area covered by this map
but is interpreted to intersect at depth the same geological units as
appearing in FNX1168.

The boreholes were theoretically NQ sized (diameter of 75.7 mm),
but the caliper log was measured to implement on-site calibration to
correct for borehole size. The fluid filling the holes was water. A winch
and steel cable systemwas used to lower a multi-parameter digital log-
ging probe down the holes and measure the data. The data includes
4405 and 8484 measurement at an interval of 20 cm along the
FNX1168 and FNX1182 holes, respectively.

We undertook the neural network training and classification process
on the logging data from FNX1168 twice,firstlywith the target vector as
the rock type logged by geologists and secondly with the target as the
physical log units identified by the fuzzy k-means clustering
(Mahmoodi and Smith, 2015). The rock types logged by geologists in
FNX1182 are only used to comparewith the prediction from the trained
networks. The physical properties measurements, rock type logged by
geologists, and physical log units of FNX1168 are shown in Fig. 3.

The three-element input vectors representing three logging mea-
surements at each depth were created. As is required in neural net-
works, each physical property should be normalized between 0 and 1.
Because the magnetic susceptibility and gamma-ray response cover a
large range of values, we found we could get better results when we
took the logarithm of the measured value prior to normalizing the
data. Each input vector of FNX1168 is then associated with a target vec-
tor identifying the rock type or physical unit belonging to each
Fig. 2. The location of FNX1168 on the geological map of the Victoria property. FNX1182 is locat
black rectangle in the top right figure.
measurement point. The number of elements in the target vector equals
the number of classes present in training data; i.e. seven elements for
rock types and four elements for physical units. The kth element of the
target vector is 1 when an input vector belongs to the kth class, and
the rest are 0 (Qi and Carr, 2006 and Beale et al., 2001).

4. Results

Precise training is a very important step in the classification of data
using the neural network. Great care should be taken when selecting
input variables from the available data set; the number of input data
should be sufficient to allow the network to be trained properly. In neu-
ral network classification, the structure of the network is of significant
importance. The networkwith themost compact and simplest structure
is generally selected to classify new data as this provides minimal error
and greatest generalization. This process is not straightforward; it re-
quires considerable experimentation and evaluation of the error of per-
formance and generalization of the network with different structures to
obtain the optimal choice (Qi and Carr, 2006). Generally the required
number of hidden layers and hidden neurons increase as the complexity
between input and output data increases.

4.1. Predicting geological units

After some experimentation, the structure of the network for rock
type prediction was selected to be 3–15–7. These values represent the
number of neurons in the input layer, hidden layer, and output layer, re-
spectively. In the training process the best performance occurred at the
ed to the north beyond the area covered by thismap. The study area ismarked by the small



Fig. 3.Gamma-ray response,magnetic susceptibility and densitymeasurement in FNX1168. These properties were used to train the network to predict the rock types logged by geologists
(second from right panel) or the physical log units identified by fuzzy k-mean clustering (Mahmoodi and Smith, 2015) (right panel).
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76th epoch and training was terminated at the 86th epoch where the
maximum number of validation checks was reached. Overall, the net-
work showed 83% correlation between the predicted rocks and the ac-
tual rocks during the training process. The confusion matrix in Table 1
shows the accuracy of the network in classification of individual rock
types.

The homogenous rock types (rockswith spatially consistent physical
properties), such as quartz diorite shows a high predictive accuracy. The
accuracy formetabasalt, quartzite, quartz diorite, and diabase is remark-
ably high with 81, 97, 95, and 93% of cases predicted correctly. On the
other hand, heterogeneity in rock types results in a large range of vari-
ability of physical properties and more overlap between rock types.
Metasediment, metagabbro, and sulfide are completely misclassified,
as they are predicted as other rock types with similar physical proper-
ties. For example metasediment is usually predicted as quartzite;
metagabbro is predicted as metabasalt; and sulfide is predicted as
diabase.

Considering theprediction of similar rock types in Table 1, a question
arises as to why metasediment is predicted as quartzite, and not vice
versa. It turns out that the network shows preference for one rock
type in the classification. The rock type with higher population contrib-
utes more data for training and controls the network parameters. Since
quartzite is more dominant than metasediment, the network favors a
choice for quartzite over metasediment; likewise, sulfide is predicted
as diabase. Benaouda et al. (1999) incorporated the same number of
samples from each class to avoid a bias caused by the larger populations



Table 1
Confusionmatrix for the training data in hole FNX1168. The rock types logged by geologists (desired output) and predicted rock types by the neural network are represented in rows and
columns, respectively. The percentage of contribution of actual rock types in each predicted rock types is summarized in the table. The total length of logged and predicted rock types are
listed in last column and last row, respectively.

Predicted rock types

Quartz diorite Meta-gabbro Meta-basalt Meta-sediment Quartzite Diabase Sulfide Length (m)

Actual rock types Quartz diorite 95 0 4 0 0 1 0 455
Metagabbro 11 1 88 0 0 1 0 59.8
Metabasalt 18 0 81 0 1 0 0 235.6
Metasediment 29 0 8 0 64 0 0 16
Quartzite 3 0 0 0 97 0 0 93.2
Diabase 4 0 3 0 0 93 0 20.4
Sulfide 0 0 20 0 0 80 0 1
Length (m) 492.2 1 262.6 0 102.6 22.6 0
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when training the neural network. But they concluded that this ap-
proach under-represents the larger classes which has an even greater
detrimental impact on the results.

After the training process the parameters of the network are frozen
and are then applied to data in FNX1182. The input data vector for
each depth is presented to the network, and the 7-array output vector
is produced. Each element in the output vector represents the predicted
rock type probability, and the maximum probability determines the
predicted rock type at a specific depth (Qi and Carr, 2006). The physical
properties, predicted rock types, and actual rock types logged by the ge-
ologists in FNX1182 are represented in Fig. 4.

Comparison of the actual rock types and the predicted rock types
shows that they have a 64% overall correlation. The predictive accuracy
for individual rock types in FNX1182 is summarized in Table 2. Three-
dimensional (3D) cross plots of physical properties in actual rock
types (Fig. 5) and predicted rock types (Fig. 6) are presented. The box
plots in Fig. 7 also depict the range of variation of physical properties
(normalized between 0 and 1) in actual and predicted rock types of
FNX1182.

As shown in Fig. 5 quartz diorite forms a dense, well separated class
which facilitates classification of this rock type. The predicted quartz di-
orite has similar distribution in Fig. 6 as 98% of quartz diorite logged by
geologists was predicted as quartz diorite in the neural network classi-
fication. Such a high correlation is illustrated by a similar range of phys-
ical properties of actual quartz diorite and predicted quartz diorite in
Fig. 7.

Metagabbro andmetabasalt have similar physical properties illustrat-
edwith significant overlap in Fig. 5. Table 2 shows that 44% and 43% of ac-
tual metagabbro and metabasalt are predicted correctly as metagabbro
and metabasalt, respectively. Dissimilar distribution of these rock types
in Figs. 5 and 6 illustrates their misclassification. However, they are mu-
tually predicted as each other, i.e. 35% of both actual metagabbro and
metabasalt are predicted as metabasalt and metagabbro, respectively. It
implies that the network is not capable of distinguishing between rocks
with similar physical properties.

High gamma-ray response and lowdensity are themain characteris-
tics ofmetasediment and quartzite in FNX1168, but Fig. 7 illustrates that
they have a broader range of variation in FNX1182, which results in
these rocks being predicted as metagabbro and quartz diorite. Due to
similarity in physical properties of metasediment and quartzite 44% of
metasediment is predicted as quartzite. Quartzite is relatively well clas-
sified with 55% receiving the correct classification.

Only 23% of diabase is correctly predicted by the neural network.
High density and high magnetic susceptibility are the characteristics of
diabase in FNX1168. However in FNX1182, as shown in Fig. 7, the
main portion of this rock has a lower density and is surrounded in Fig.
4 by quartz diorite and metagabbro. This means that diabase in
FNX1182 have different properties from the diabase used in the training
process, so are predicted to be quartz diorite (52%) and metagabbro
(25%). Inconsistent physical properties of diabase result in inaccurate
performance of the network for diabase prediction. Measurements of
other rock types with high magnetic susceptibility are predicted as
diabase.

Due to insufficient samples in the training process and similar phys-
ical properties of sulfide and diabase, sulfide is mainly (75%) predicted
as diabase. Distribution of sulfide in Fig. 5 corresponds to predicted dia-
base in Fig. 6. Sudbury breccia and pyroxenite are three rock types in
FNX1182 which are absent in FNX1168. So, the trained network is not
capable of predicting these rocks. Their physical properties are such
that they are predicted as other rock types. Pyroxenite ismainly predict-
ed as quartz diorite and to some extent as metagabbro and metabasalt.
Sudbury breccia is themost heterogeneous rock anddoes not show con-
sistent physical properties (Fig. 5) and its contribution to different pre-
dict rock types can be seen in Table 2.

4.2. Predicting physical log units

The second approach is to represent the physical properties mea-
surements of FNX1182 with physical log units. A 3-10-4 network was
selected for physical log unit prediction in FNX1182. Physical properties
measurements and identified physical log units from FNX1168 (Fig. 3)
were used to train the network. Cluster 1 has low gamma ray response
and high density; cluster 2 is characterized by medium gamma ray re-
sponse and medium density; cluster 3 shows low density and high
gamma-ray response; and a HiMag unit is distinguished by high mag-
netic susceptibility. A careful comparison of the physical log units with
the geological rock type from FNX1168 (Mahmoodi and Smith, 2015)
concluded that cluster 1mainly representsmetabasalt andmetagabbro,
cluster 2 constitutes quartz diorite, cluster 3 mainly represents
metasediment and quartzite, and HiMag represents diabase and sulfide.

In the training process, the best validation performance occurred at
the 61st epoch where the training stopped as the minimum gradient
was reached. The more rapid convergence than training the network
for rock-type prediction suggests the reduced complexity of the
problem.

The confusion matrix for the training data in Table 3 shows that the
physical log units have a total of 95% of the samples being correctly clas-
sified. Thus, the ambiguity associatedwith the rock-type prediction that
resulted in misclassifications is not seen with physical log units.

The neural network was then applied to the physical properties
measurements collected in FNX1182 and each input datum was classi-
fied as either cluster 1, 2, 3, or the HiMag unit (Fig. 4, the right column).
Fig. 8 shows distribution of physical units in the physical properties
environment.

In addition to being used in geophysical studies, the predicted phys-
ical units can be used in conjunction with available geological informa-
tion. The reliability of this approach mainly relies on our understanding
of the link between physical units and rock types. We assume that the



Fig. 4. Gamma-ray response, magnetic susceptibility and density measurement in FNX1182, which were presented to the trained network. Predicted rock types (third from right panel)
and physical log units (right panel) are plotted. The geologist's classified rock types (second from right panel) are shown for comparison purpose.
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same relationships between the physical units and rock types apply to
FNX1182. To verify this assumption the predicted physical units were
compared with the actual rock types in FNX1182 and the contribution
of each rock types in the four physical units is summarized in Table 4.
The results mostly agreed with the expected correlation of physical
units with rock types. This implies that physical unit prediction can be
used as a tool to identifying classes of rock types with acceptable
certainty.

Specifically, ninety eight percent of quartz diorite in FNX1182 is rep-
resented by cluster 2. Quartzite and typical metasediment with high
gamma-ray response are the dominant rock types in cluster 3 with
70% and 45% contributions, respectively. Cluster 1 represents 77% of
metagabbro and 80%metabasalt. Unlike in hole FNX1168, a high portion
of diabase is classified into cluster 1. Sulfide was mainly represented in
the HiMag cluster.

5. Discussion

Several factors should be considered while interpreting predicted
rock types directly from physical properties or inferred from physical
unit prediction.

- While training the network, the number of data belonging to each
class involved in the training process influences the network perfor-
mance. Because the rock types with a large population contribute
more data in training, the network shows a preference for the



Table 2
The rock types logged by geologists (left column)were considered to evaluate the network accuracy in rock type prediction in hole FNX1182. The rock types predicted by the neural net-
work are represented in columns, and the percentage of contribution of actual rock types in each predicted rock types is summarized in the table. Total length of logged and predicted rock
types are listed in last column and last row, respectively.

Predicted rock types

Quartz diorite Meta-gabbro Meta-basalt Meta-sediment Quartzite Diabase Sulfide Length (m)

Actual rock types Quartz diorite 98 1 0 0 1 0 0 754
Metagabbro 20 44 35 0 0 1 0 378.2
Metabasalt 15 35 43 1 6 1 0 349.2
Metasediment 5 35 7 2 44 7 0 89
Quartzite 23 1 2 8 55 13 0 33.6
Diabase 52 25 0 0 0 23 0 20
Sudbury breccia 40 31 0 3 27 0 0 39.2
Sulfide 25 0 0 0 0 75 0 15.8
Pyroxenite 47 21 31 0 0 0 0 17.8
Length(m) 913.6 350.8 295.4 13 92 32 0
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dominant rock type rather than less populous rock types when they
have similar physical properties. Thus, the significant predication of
metasediment as quartzite, or sulfide as diabase can be explained, as
in each case, the latter rock-type is more populous.

- Another factor is the heterogeneity of rock types which results in in-
consistent physical property behavior. If the physical properties of a
specific rock type are different in the training data and the prediction
data, the rock type cannot be predicted correctly. The high density
and high magnetic susceptibility are two distinguishing characteris-
tics of diabase, but a remarkable portion of diabase in FNX1182 has
lower density andmagnetic susceptibility. This results inmisclassifi-
cation of diabase as quartz diorite and metagabbro. Another exam-
ple of this is the misclassification of metasediment as metagabbro
in FNX1182.

- Similarity in physical properties results in ambiguity. The overlap of
physical properties of two or more rocks results in misclassification.
Metagabbro and metabasalt are misclassified as each other in rock
type prediction, and they are represented by one physical unit.

- The network is able to predict only the rock type or physical log units
fromwhich it is trained.Wise data selection for training the network
Fig. 5. 3D cross plots of density, gamma-ray response, and magnetic susceptibility mea-
surements for the actual rock type in FNX1182.
is therefore critical for accurate classification. Sudbury breccia and
pyroxenitewere not considered as an output in the rock type predic-
tion because they were absent in the training data.

To find a geological explanation for the similarities and differences in
the physical characteristics of rocks core samples were studied. Plagio-
clase, amphibole, and pyroxene are the dominant minerals of both
metagabbro andmetabasalt, thoughmetabasalt contains slightly higher
amount of amphibole and a smaller amount of biotite. The grain size of
metabasalt is finer than metagabbro. Thus, they are of broadly similar
composition andmineralogy, explaining the similar physical properties
of these two rocks, and the differences in grain size appears to not con-
trol the physical properties asmuch as themineralogy. A detailed exam-
ination of the metabasalt and metagabbro showed patches of
inconsistent grain size and the percentage of clinopyroxene observed
in core samples, possibly explaining some of the heterogeneity in the
physical properties measurements.

Compared to metagabbro and metabasalt, quartz diorite contains
less amphibole and pyroxene, and higher amounts of plagioclase and
Fig. 6. 3D cross plots of density, gamma-ray response, and magnetic susceptibility mea-
surements for the predicted rock types in FNX1182.



Fig. 7. Box-plots of normalized gamma ray response, magnetic susceptibility and density measurements of rock types logged by geologists and predicted by the neural network. Labels
used in the plot: MTBS: metabasalt; MTGB: metagabbro; QD: quartz diorite; MTSD: metasediment; QTZT: quartzite; DIA: diabase.
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quartz. It has finer grain size, is lighter in color, and has a lower density.
Occurrences of sulfide mineralization in quartz diorite will increase its
density, although for low concentrations of mineralization the increase
is not significant enough tomake a significant change in the density log.

Metasediment has a similar mineralogical composition to quartz
diorite, but also contains minor garnet and iron oxide. The high
gamma-ray response of the metasediment is interpreted to be due to
the relatively high concentration of radioactiveminerals in the protolith
(sedimentary rocks that were metamorphosed).

Diabase has a fine grain size and is composed of pyroxene, amphi-
bole, and up to 10% magnetite. Such high concentration of dense mafic
minerals andmagnetite increases the density andmagnetic susceptibil-
ity of diabase. The portion of diabase with lowermagnetic susceptibility
contains less magnetite. Diabase can be mineralogically very similar to
gabbro, which explains why the non-magnetic diabase is predominant-
ly placed in cluster 1 containingmetagabbro andmetabasalt. Metamor-
phism can result in changes in the amount and grain size of magnetite
and variable metamorphism could play a role in the classification of di-
abase, metagabrro and metabasalt. High concentration of pyrrhotite
also increases themagnetic susceptibility which corresponds to the sul-
fide zone on the log with high magnetic susceptibility.

Pyroxenite is a rock primarily composed of themafic mineral pyrox-
ene which explains why it is easily misclassified as a metagabbro or a
basalt (which also contain pyroxene) when there are few radioactive
minerals present, or quartz diorite when there are more radioactive
minerals present. The Sudbury breccia forms via cataclasis of pre-
existing rocks and can form in any of the other rock types present in
the area. The formation of the breccia produces a finer-grained matrix
and clasts that simply reflect a mixture of the pre-existing rock types,
explaining the heterogeneity and the difficulty in classifying this rock
type.
Table 3
Correlation between physical log units defined by fuzzy k-means clustering (rows) and
predicted by the neural network (columns) using the training data set from FNX1168.
The values indicate the percentage of contribution of the defined physical units in each
of the predicted unit. The total length of drill-hole classified to each of the units is shown
in the table.

Predicted physical unit

Cluster
1

Cluster
2

Cluster
3

HiMag Length(m)

Physical units
identified by
clustering

Cluster1 95 3 0 2 268.4
Cluster2 1 98 1 0 495.2
Cluster3 1 2 97 0 109.6
HiMag 1 4 0 95 31.2

Length(m) 263.4 494.6 112.2 34.2
The confusion associated with rock-type prediction is due to the
overlap between the physical properties of the rock types, and this re-
duces the reliability of the results. If the rocks with similar physical
properties are represented as a physical log unit, the problem is simpli-
fied. The significant decrease in the number of misclassified data in the
process of training the network to identify physical log units illustrates
greater accuracy and reliability (Table 3). In this case, although there are
fewer types classified, interpretation can be more reliable since there is
less ambiguity associated with the results.
6. Conclusion

Depending on the objective, down-hole physical properties mea-
surements can be analyzed using the neural network to predict geolog-
ical rock type or determine physical log units in the hole. The
heterogeneity of physical property of rocks and the overlap of the phys-
ical properties of two ormore rock types reduce the prediction accuracy.
The population of rock types also controls the training process as the
network shows preference for dominant rock types in the output and
Fig. 8. 3D cross plots of density, gamma-ray response, and magnetic susceptibility mea-
surements for the predicted physical units in FNX1182.



Table 4
The percentage contribution of rock types (logged by geologists) as classified into physical
log units in FNX1182.

Predicted physical units

Cluster
1

Cluster
2

Cluster
3

HiMag Length
(m)

Actual rock types Quartz diorite 1 98 1 0 754
Metagabbro 77 22 0 0 378.2
Metabasalt 80 12 8 0 349.2
Metasediment 45 4 45 5 89
Quartzite 17 13 70 0 33.6
Pyroxenite 49 51 0 0 17.8
Diabase 49 28 0 23 20
Sulfide 0 16 0 84 15.8
Sudbury breccia 34 32 34 0 39.2
Length (m) 661 902.6 109 24.2
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minor rock types are predicted as the dominant rock types that have
most similar physical properties.

In this work, the network was trained from data from FNX1168 to
obtain the appropriate network to predict rock types and physical
units in FNX1182. Predicting the physical units was simpler compared
with rock type prediction, requiring only 10 hidden neurons compared
with 15. When predicting the rock type, an accuracy of 83% was
achieved in the training process, which is reasonable considering the
complexity of this problem. However, the trained network only had
64% of accuracy in predicting rock types in FNX1182. Therewas an accu-
racy of 95% in training the network on physical log units (defined by a
fuzzy k-means statistical classification), which implies an enhanced re-
liability and less ambiguity of the results.

In geological or geophysical studies, physical properties can be used
to predict either rock type or physical units. Using a neural network to
predict rock type instead of physical units gives more detailed informa-
tion, however the tradeoff is less accuracy and greater ambiguity. On the
other hand, when predicting the physical log unit, there is greater accu-
racy, but the ambiguity is still not completely resolved, as many differ-
ent rocks can be classified as a single physical log unit depending on
the exact factors controlling the geophysical properties. However, the
physical log units do define identifiable and unique units with geologi-
cal significance from a physical properties perspective, and these can be
useful for geophysical studies in forward and inverse modeling
exercises.
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