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Craton scale project
• Aims to perform multi-isotopic 

mapping of the Superior Craton
• Collection of large U-Pb-Hf-O-

TE dataset on both new and 
archived zircons to:

• Constrain time-space 
evolution of the craton

• Build an advanced knowledge 
of crustal architecture across 
the craton

• Relate the crustal architecture 
to localisation of mineral 
systems
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Modified after Montsion et al. (2018)



Methodology
• Sample acquisition:

• Craton divided into quadrants
• Sub-samples collected from 

existing zircon material
• Field work in under-sampled 

areas

• Data Collection:
• U-Pb-Hf-TE isotopic data collected 

in-situ from zircons at Laurentian 
University and Curtin University

• Imaging and O-isotope data 
collected at University of Alberta 
w/ Richard Stern

• Processing and map data:
• Reduce the data and produce 

contour maps and time-slices

2



Background
• Sm-Nd/Lu-Hf system:

• Radiogenic isotope system
• Sm-Nd system is on whole-rock 

powders
• Lu-Hf is on zircons
• Young, mantle-derived crust 

typically has εHf>0
• Old crust typically has εHf<0
• Two-stage model age (TDM

2) is the
age a particular source separated
from the mantle

• Crustal residence age is the time 
since the crust was extracted
from the mantle/residence time 
of the source:

• U-Pb age - TDM
2
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U-Pb age = 2600 Ma
TDM

2 = 2850 Ma

U-Pb age = 2850 Ma
TDM

2 = 2850 Ma

Crustal residence age = -250 Ma



Background
• The O-isotope system:

• 18O/16O stable isotope system
• Collected on zircon
• Mantle values 5.9-4.7‰
• “Heavier” values suggest a 

supracrustal component, i.e. 
seafloor sediments

• “Lighter” values suggest a high-
temperature hydrothermal 
component

• Temperature-related information
• Source information
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• Mineral provinces and their ore deposits are heterogeneously distributed within the Earth’s 
crust, in both space and time

• In mineral exploration, the aim is to find these ore deposits amongst the poorly-endowed crust
• To be able to do that, it requires exploration techniques that progressively select areas and 

down-scale, from planetary-scale, through continent-, terrane- and belt-scales
• Lithospheric and crustal architecture has been shown to have a first-order control on 

localisation of major ore systems
• Related to this, isotopic systems (Nd, Hf, Sr and O) have been vital in uncovering the evolution 

of the continental crust through time- but rarely applied spatially
• Isotopic mapping applies the power of isotopic systems spatially, to provide a new method of 

imaging crustal architecture, and sort the mineral-endowed areas from the poorly mineral-
endowed areas at the continent- to belt-scale

5

The potential of isotopic mapping in mineral exploration:



The history of 
isotopic mapping:
• The first maps

• DePaulo and Farmer sampled 
granitoids in the northern 
California and northwestern 
Nevada in 1984

• Sm-Nd isotopes used to draw 
crustal boundaries
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DePaulo and Farmer (1984)



The history of 
isotopic mapping:
• The first maps

• DePaulo and Farmer sampled 
granitoids in the northern 
California and northwestern 
Nevada in 1984

• Sm-Nd isotopes used to draw 
crustal boundaries

• Dickin and McNutt did a similar 
study in 1989

• Sm-Nd isotopes from plutons 
were used to identify a suture 
zone
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Dickin and McNutt (1989)



Sm-Nd mapping: 
Yilgarn, Australia

• Isotopic mapping:
• Yilgarn granites show similar age 

ranges and geochemistry across 
the craton

• How can we effectively 
understand spatial variations in 
crustal evolution?

• Radiogenic isotopes:
• The spatial application of the 

Sm-Nd unveiled the cryptic 
architecture of the Yilgarn 
Craton

• Apparent controls on multiple 
mineral systems

• Result:
• Crustal architecture has a first-

order control on the location of 
major mineral systems

• …and we have a way to image it
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Dickin and McNutt (1989)

Mole et al. (2013) Geol. Soc. London Spec. Pub.



Metal Earth craton scale project:
Part 1:

Isotopic mapping of the southeastern Superior Craton, 
crustal architecture and geodynamic setting
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Superior Craton

Modified after Montsion et al. (2018)
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Superior Craton



U-Pb ages:
Spatial data

• Distribution of U-Pb ages:
• NE and W edge show >2750 

Ma ages

• Central Abitibi dominated by 
younger ages

• >2750 Ma xenocrysts have 
been found within the Abitibi
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Mole et al. (2021) Precambrian Research



SE Superior dataset:
Hf isotopes

Three major Hf reservoirs:
1. SW Superior = 3200 Ma
2. Opatica = 3100 Ma
3. Abitibi-Wawa = ca. 2900 Ma
• Ca. 5 εHf unit range

Is contamination viable?
• DM magmas with 5-20% of Opatica 

crust can explain Abitibi 
compositions

• Ca. 5-10% for SW Superior crust
• Mesoarchean component to the 

Abitibi?
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Mole et al. (2021) Precambrian Research



Spatial data:
Hf isotopes

Lu-Hf isotopic mapping:

• Central region of more juvenile, 
younger crust

• Surrounded by slightly older crust 

• δ18O data are more “light” in the 
most juvenile regions

Time-slices:

• Syn-volcanic
• Juvenile central Abitibi

• Post-volcanic
• Overall, more evolved signatures
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Mole et al. (2021) Precambrian Research



SE Superior dataset:
O-isotopes

• Four major components:
1. 2800-2825 Ma: Mantle δ18O
2. Ca. 2750-2695 Ma: Small heavy 

component, light component 
increases over time

3. 2695-2660 Ma: Heavy component 
increases 

4. <2650 Ma: Heavy component only

• Major transition at 2695 Ma:
• Increase in δ18O correlates with 

other data
• Increase in sedimentary component
• Decrease in mantle component
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Mole et al. (2021) Precambrian Research



Spatial data:
O-isotopes

• O-isotopic mapping:
• Central area of light to mantle-like 

δ18O 
• Regions to east and west have 

relatively heavy δ18O
• Central area = greater high-

temperature hydrothermal 
interactions? 

• δ18O may map out areas with high 
heat-flow

• Time slices:
• Syn-volcanic

• “Light” mantle signatures in 
central Abitibi, “heavy 
signatures toward edges

• Post-volcanic

• Overall, “heavy” signatures
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Mole et al. (2021) Precambrian Research



SE Superior dataset:
Zircon trace 

elements
• Oxygen fugacity by ΔFMQ:

• Major increase at ca. 2695 Ma to 
more oxidised magmas

• This correlates with data from εHf 
and δ18O

• Together, these observations 
suggest a major tectono-thermal 
transition at ca. 2695 Ma
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Mole et al. (2021) Precambrian Research



Spatial data:
ΔFMQ

• ΔFMQ distribution:
• Pattern broadly similar to that 

observed in εHf and δ18O 

• Reduced central region, more 
oxidised flanks

• However, there is a noticeable 
higher and potentially important 
complexity
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Mole et al. (2021) Precambrian Research



Geodynamic model: Pre-2750 Ma

A young Mesoarchean continent edge?
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Geodynamic model: ca. 2750-2695 Ma
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Geodynamic model: <2695 Ma

N

S
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Mole et al. (2021) Precambrian Research



Summary

• The changing nature of the Hf-isotope, ΔFMQ and δ18O data record the changing geodynamic setting in 
the south-east Superior Craton

• The spatial extent of these variables records the crustal architecture 

• The south-east Superior can be characterised in four main stages:

1. A young (Mesoarchean) continent edge at >2750 Ma; 

2. Hyper-extension at 2750-2695 Ma in a prolonged rifting event that formed the Abitibi; 

3. Initiation of subduction at ca. 2695 Ma; and

4. Continental collision (with MRVT) at ca. 2685-2680 Ma

• If correct, these new data suggest that Neoarchean continental growth occurred via at least two distinct 
mechanisms
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Metal Earth craton scale project:
Part 2:

Isotopic mapping of the southeastern Superior Craton, 
crustal architecture and mineral systems
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Lu-Hf isotopes:
εHf

• Abitibi:
• Magmatic event starts at 2750 

Ma
• Juvenile signatures
• Reaches εHf>+7 at ca. 2695 

before it starts to decrease
• Non-Abitibi:

• Two sources?
• Both juvenile and evolved 

signatures
• Overall, rocks are more 

unradiogenic
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Mole et al. (2022) Ore Geology Review

Abitibi: Non-Abitibi:



O-isotopes:
δ18O

• Abitibi:
• 2850-2750 Ma: mantle-zircon

signatures
• 2750-2695 Ma: small «heavy» 

component, increasing «light» 
component

• <2695 Ma: heavy component
increases, same time as we see
transition in Hf-isotopes

• Non-Abitibi:
• 2800-2750 Ma: mantle 

signatures
• 2750-2700 Ma: increasingly 

“heavy” component
• <2700 Ma: mostly “heavy” 

values, range is larger than for 
the Abitibi 
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Mole et al. (2022) Ore Geology Review

Abitibi: Non-Abitibi:



• Abitibi:
• 2750-2695 range 20-0.2 = 

hydrous magmas
• >2695 Ma less hydrous 

component ceases
• Non-Abitibi:

• 2750-2695 Ma similar to Abitibi
• After 2670 Ma all >10 = wet or 

deep sources
• KSZ values are high and source 

likely deep and dry = suggests a 
depth component
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Mole et al. (2022) Ore Geology Review

Abitibi: Non-Abitibi:

Zircon TE:
Eu/Eu*/Y*10000

Hydration



• Abitibi:
• Major increase at ca. 2695 Ma 

to more oxidised magmas

• This correlates with data from 
εHf and δ18O

• Non-Abitibi:
• Similar pattern, but not as 

wide of a range as Abitibi data
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Zircon TE
∆FMQ

Oxygen fugacity
Abitibi: Non-Abitibi:

Mole et al. (2022) Ore Geology Review



• Abitibi:
• >2750 Ma the trace elements 

show signatures of a continental 
source

• 2750-2695 Ma the signatures are 
more mixed

• <2695 Ma there is a larger crustal 
component

• Non-Abitibi:
• Similar trends, but not many 

samples in the mixed and mantle-
array field

• Exception for samples from the 
Kapuskasing which show the 
highest ratios and plot in the high-
grade metamorphism/anatexis 
field
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Zircon TE
 Ui/Yb and Ui/Nb

Tectonic setting

Mole et al. (2022) Ore Geology Review

Abitibi Non-Abitibi



• Abitibi:
• Very juvenile εHf and low δ18O, 

high ∆FMQ
• Juvenile magmas and mantle-like 

crust

• Non-Abitibi:
• Less juvenile εHf and higher δ18O
• Less juvenile magmas and more 

evolved crust
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Mineral systems:
Isotope- and geochemistry 

summary map

Mole et al. (2022) Ore Geology Review



• Three volcanic assemblages:
1. Mixed εHf and δ18O, lower heat 

flow= Zn-Pb VMS
2. εHf is high, δ18O relatively

low,high heat flow zone= Cu-Au 
VMS

3. Very high εHf and low δ18O, high
heatflow= Au-rich VMS

28

Mineral system:
VMS

2750-2695 Ma

Mole et al. (2022) Ore Geology Review



• Abitibi is relatively poorly-endowed 
in Ni-Cu-PGE

• Komatiite associated
• Number of deposits increase with 

time
• Localization tied to crustal 

architecture
• Very high εHf

29

Mineral system:
Ni-Cu-PGE

2750-2695 Ma

Mole et al. (2022) Ore Geology Review



• Follow regionally extensive east-
trending fault zones

• Gold systems
• Elevated δ18O, high

Eu/Eu*/Y*10000 and 
∆FMQ= hydrous and oxidised
magmas
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Mineral system:
Gold (non-VMS)

<2695 Ma

Mole et al. (2022) Ore Geology Review



Summary

31

>2750-2695 Ma
• A rift-dominated tectonic setting
• VMS and Ni-Cu-PGE systems are showing variable Hf- and O-isotopes, but εHf signatures are

relatively high and δ18O are low
• Syn-volcanic mineral systems, VMS and Ni-Cu-PGE deposits are localised within a complex and 

evolving rift architecture

<2695 Ma
• Major shift observed in multiple geochemical and isotopic parameters
• Orogenesis and subduction-dominated tectonic setting
• Gold systems may be driven by the more hydrous, oxidised source zones present at this time
• However, localisation appears strongly influenced by syn-volcanic architecture



Thank you.
Questions?

Contact: knymoen@laurentian.ca
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