

Isotopic mapping and its application to understanding craton architecture and localization of mineral systems

2023-11-27

MERC Short Course, Saskatchewan Geological Open House

Kristine G. Nymoen¹ (Ph.D. Candidate) David Mole², Phil Thurston¹, Douglas Tinkham¹, Richard A. Stern³

¹Mineral Exploration Research Centre, Harquail School of Earth Sciences, Laurentian University, Sudbury, Canada

²Geoscience Australia, Canberra, Australia

³Canadian Centre for Isotopic Microanalysis, University of Alberta, Edmonton, Canada

- Metal Earth: intro of the craton scale project
- Background
- Results from isotopic mapping in the SE Superior Craton
 - Part 1: crustal architecture and geodynamic setting
 - Part 2: crustal architecture and mineral systems
- Summary

- Metal Earth: intro of the craton scale project
- Background
- Results from isotopic mapping in the SE Superior Craton
 - Part 1: crustal architecture and geodynamic setting
 - Part 2: crustal architecture and mineral systems
- Summary

- Metal Earth: intro of the craton scale project
- Background
- Results from isotopic mapping in the SE Superior Craton
 - Part 1: crustal architecture and geodynamic setting
 - Part 2: crustal architecture and mineral systems
- Summary

- Metal Earth: intro of the craton scale project
- Background
- Results from isotopic mapping in the SE Superior Craton
 - Part 1: crustal architecture and geodynamic setting
 - Part 2: crustal architecture and mineral systems
- Summary

- Metal Earth: intro of the craton scale project
- Background
- Results from isotopic mapping in the SE Superior Craton
 - Part 1: crustal architecture and geodynamic setting
 - Part 2: crustal architecture and mineral systems
- Summary

- Metal Earth: intro of the craton scale project
- Background
- Results from isotopic mapping in the SE Superior Craton
 - Part 1: crustal architecture and geodynamic setting
 - Part 2: crustal architecture and mineral systems

• Summary

Craton scale project

- Aims to perform multi-isotopic mapping of the Superior Craton
 - Collection of large U-Pb-Hf-O-TE dataset on both new and archived zircons to:
 - Constrain time-space
 evolution of the craton
 - Build an advanced knowledge of crustal architecture across the craton
 - Relate the crustal architecture to localisation of mineral systems

Modified after Montsion et al. (2018)

Methodology

• Sample acquisition:

- Craton divided into quadrants
- Sub-samples collected from existing zircon material
- Field work in under-sampled areas
- Data Collection:
 - U-Pb-Hf-TE isotopic data collected in-situ from zircons at Laurentian University and Curtin University
 - Imaging and O-isotope data collected at University of Alberta w/ Richard Stern
- Processing and map data:
 - Reduce the data and produce contour maps and time-slices

Background

Sm-Nd/Lu-Hf system:

- Radiogenic isotope system
- Sm-Nd system is on whole-rock
 powders
- Lu-Hf is on zircons
- Young, mantle-derived crust typically has εHf>0
- Old crust typically has εHf<0
- Two-stage model age (T_{DM}²) is the age a particular source separated from the mantle
- Crustal residence age is the time since the crust was extracted from the mantle/residence time of the source:
 - U-Pb age T_{DM}^2

Background

- The O-isotope system:
 - ¹⁸0/¹⁶0 stable isotope system
 - Collected on zircon
 - Mantle values 5.9-4.7‰
 - "Heavier" values suggest a supracrustal component, i.e. seafloor sediments
 - "Lighter" values suggest a hightemperature hydrothermal component
 - Temperature-related information
 - Source information

The potential of isotopic mapping in mineral exploration:

- Mineral provinces and their ore deposits are heterogeneously distributed within the Earth's crust, in both space and time
- In mineral exploration, the aim is to find these ore deposits amongst the poorly-endowed crust
- To be able to do that, it requires exploration techniques that progressively select areas and down-scale, from planetary-scale, through continent-, terrane- and belt-scales
- Lithospheric and crustal architecture has been shown to have a first-order control on localisation of major ore systems
- Related to this, isotopic systems (Nd, Hf, Sr and O) have been vital in uncovering the evolution of the continental crust through time- but rarely applied spatially
- Isotopic mapping applies the power of isotopic systems spatially, to provide a new method of imaging crustal architecture, and sort the mineral-endowed areas from the poorly mineral-endowed areas at the continent- to belt-scale

The history of isotopic mapping:

• The first maps

- DePaulo and Farmer sampled granitoids in the northern California and northwestern Nevada in 1984
- Sm-Nd isotopes used to draw crustal boundaries

DePaulo and Farmer (1984)

The history of isotopic mapping:

• The first maps

- DePaulo and Farmer sampled granitoids in the northern California and northwestern Nevada in 1984
- Sm-Nd isotopes used to draw crustal boundaries
- Dickin and McNutt did a similar study in 1989
- Sm-Nd isotopes from plutons were used to identify a suture zone

Dickin and McNutt (1989)

Sm-Nd mapping: Yilgarn, Australia

- Isotopic mapping:
 - Yilgarn granites show similar age ranges and geochemistry across the craton
 - How can we effectively understand spatial variations in crustal evolution?
- Radiogenic isotopes:
 - The spatial application of the Sm-Nd unveiled the cryptic architecture of the Yilgarn Craton
 - Apparent controls on multiple mineral systems
- Result:
 - Crustal architecture has a firstorder control on the location of major mineral systems
 - ...and we have a way to image it

Metal Earth craton scale project: Part 1: Isotopic mapping of the southeastern Superior Craton, crustal architecture and geodynamic setting

Superior Craton

U-Pb ages: Spatial data

- Distribution of U-Pb ages:
 - NE and W edge show >2750 Ma ages
 - Central Abitibi dominated by younger ages
 - >2750 Ma xenocrysts have been found within the Abitibi

SE Superior dataset: Hf isotopes

Three major Hf reservoirs:

- 1. SW Superior = 3200 Ma
- 2. Opatica = 3100 Ma
- 3. Abitibi-Wawa = ca. 2900 Ma
- Ca. 5 ɛHf unit range

Is contamination viable?

- DM magmas with 5-20% of Opatica crust can explain Abitibi compositions
- Ca. 5-10% for SW Superior crust
- Mesoarchean component to the Abitibi?

at the HAROUAIL School of Earth Sciences

Spatial data: Hf isotopes

Lu-Hf isotopic mapping:

- Central region of more juvenile, younger crust
- Surrounded by slightly older crust
- δ¹⁸O data are more "light" in the most juvenile regions

Time-slices:

- Syn-volcanic
 - Juvenile central Abitibi
- Post-volcanic
 - Overall, more evolved signatures

Mole et al. (2021) Precambrian Research

SE Superior dataset: O-isotopes

- Four major components:
 - 1. 2800-2825 Ma: Mantle δ^{18} O
 - 2. Ca. 2750-2695 Ma: Small heavy component, light component increases over time
- 3. 2695-2660 Ma: Heavy component increases
- 4. <2650 Ma: Heavy component only
- Major transition at 2695 Ma:
- Increase in $\delta^{18}\text{O}$ correlates with other data
- Increase in sedimentary component
- Decrease in mantle component

Spatial data: O-isotopes

- O-isotopic mapping:
 - Central area of light to mantle-like $\delta^{18} O$
 - Regions to east and west have relatively heavy $\delta^{18} O$
 - Central area = greater hightemperature hydrothermal interactions?
 - δ^{18} O may map out areas with high heat-flow
- Time slices:
- Syn-volcanic
 - "Light" mantle signatures in central Abitibi, "heavy signatures toward edges
- Post-volcanic
 - Overall, "heavy" signatures

TAI EARTH

CANADA

Canada

APOGÉE

Mole et al. (2021) Precambrian Research

SE Superior dataset: Zircon trace elements

- Oxygen fugacity by Δ FMQ:
 - Major increase at ca. 2695 Ma to more oxidised magmas
 - This correlates with data from EHf and $\delta^{18}O$
 - Together, these observations ٠ suggest a major tectono-thermal transition at ca. 2695 Ma

EXCELLENC

Mineral Exploration Research Centre at the HAROUAIL School of Earth Sciences

Spatial data: ΔFMQ

- ΔFMQ distribution:
 - Pattern broadly similar to that observed in ϵHf and $\delta^{18}O$
 - Reduced central region, more oxidised flanks
 - However, there is a noticeable higher and potentially important complexity

Mole et al. (2021) Precambrian Research

Geodynamic model: Pre-2750 Ma

A young Mesoarchean continent edge?

Geodynamic model: ca. 2750-2695 Ma

Geodynamic model: <2695 Ma

North-dipping arc initiates at ca. 2695 Ma

Mole et al. (2021) Precambrian Research

19

Summary

- The changing nature of the Hf-isotope, ΔFMQ and δ¹⁸O data record the changing geodynamic setting in the south-east Superior Craton
- The spatial extent of these variables records the crustal architecture
- The south-east Superior can be characterised in four main stages:
 - 1. A young (Mesoarchean) continent edge at >2750 Ma;
 - 2. Hyper-extension at 2750-2695 Ma in a prolonged rifting event that formed the Abitibi;
 - 3. Initiation of subduction at ca. 2695 Ma; and
 - 4. Continental collision (with MRVT) at ca. 2685-2680 Ma
- If correct, these new data suggest that Neoarchean continental growth occurred via at least two distinct mechanisms

Metal Earth craton scale project: Part 2: Isotopic mapping of the southeastern Superior Craton, crustal architecture and mineral systems

Lu-Hf isotopes: ɛHf

- Abitibi:
 - Magmatic event starts at 2750 Ma
 - Juvenile signatures
 - Reaches εHf>+7 at ca. 2695 before it starts to decrease
- Non-Abitibi:
 - Two sources?
 - Both juvenile and evolved signatures
 - Overall, rocks are more unradiogenic

Mole et al. (2022) Ore Geology Review

O-isotopes: δ¹⁸Ο

- Abitibi:
 - 2850-2750 Ma: mantle-zircon signatures
 - 2750-2695 Ma: small «heavy» component, increasing «light» component
 - <2695 Ma: heavy component increases, same time as we see transition in Hf-isotopes
- Non-Abitibi:
 - 2800-2750 Ma: mantle signatures
 - 2750-2700 Ma: increasingly "heavy" component
 - <2700 Ma: mostly "heavy" values, range is larger than for the Abitibi

METAL EARTH

Mole et al. (2022) Ore Geology Review

Zircon TE: Eu/Eu*/Y*10000

Hydration

- Abitibi:
 - 2750-2695 range 20-0.2 = hydrous magmas
 - >2695 Ma less hydrous component ceases
- Non-Abitibi:
 - 2750-2695 Ma similar to Abitibi
 - After 2670 Ma all >10 = wet or deep sources
 - KSZ values are high and source likely deep and dry = suggests a depth component

Mole et al. (2022) Ore Geology Review

Zircon TE ∆FMQ

Oxygen fugacity

• Abitibi:

- Major increase at ca. 2695 Ma to more oxidised magmas
- This correlates with data from ϵHf and $\delta^{18}O$
- Non-Abitibi:
 - Similar pattern, but not as wide of a range as Abitibi data

<u>Abitibi:</u>

4 ΔFMQ Reference Reference data data 3. Å Δ 2 Δ 2730 2690 2710 2730 2690 2710 2750 Oxidised Oxidised Reduced Reduced Δ -2. Adakitic gran/vol ∆ Mid-ocean ridge S-Type arc granite Kimberlites -3-I-Type arc gran/vol 🛆 Lunar zircon 🛆 A-Type rhyolite △ Post-collisional 2600 2700 2900 3000 Age (Ma) 2700 2800 2900 3000 Age (Ma) 2800 2600

Mole et al. (2022) Ore Geology Review

Non-Abitibi:

Zircon TE U_i/Yb and U_i/Nb

Tectonic setting

Abitibi: •

- >2750 Ma the trace elements show signatures of a continental source
- 2750-2695 Ma the signatures are more mixed
- <2695 Ma there is a larger crustal component

Non-Abitibi:

- Similar trends, but not many samples in the mixed and mantlearray field
- Exception for samples from the Kapuskasing which show the highest ratios and plot in the highgrade metamorphism/anatexis field

Mineral systems:

Isotope- and geochemistry summary map

- Abitibi:
 - Very juvenile ϵHf and low $\delta^{18} \text{O},$ high ΔFMQ
 - Juvenile magmas and mantle-like
 crust
- Non-Abitibi:
 - Less juvenile ϵHf and higher $\delta^{18}O$
 - Less juvenile magmas and more evolved crust

METAL FARTH

at the HAROUAIL School of Earth Sciences

Mineral system: VMS

2750-2695 Ma

- Three volcanic assemblages:
 - 1. Mixed ε Hf and δ^{18} O, lower heat flow= Zn-Pb VMS
 - 2. ϵ Hf is high, δ^{18} O relatively low,high heat flow zone= Cu-Au VMS
 - 3. Very high ϵ Hf and low δ^{18} O, high heatflow= Au-rich VMS

ca. 2750-2695 Ma: Rift-dominated tectonism VMS Cu-Au-Pb-Zn and komatiite-hosted Ni-Cu-PGE systems dominate

Mineral system: Ni-Cu-PGE

2750-2695 Ma

- Abitibi is relatively poorly-endowed in Ni-Cu-PGE
 - Komatiite associated •
 - Number of deposits increase with • time
 - Localization tied to crustal • architecture
 - Very high εHf

ca. 2750-2695 Ma: Rift-dominated tectonism VMS Cu-Au-Pb-Zn and komatiite-hosted Ni-Cu-PGE systems dominate

Mineral system: Gold (non-VMS)

<2695 Ma

- Follow regionally extensive easttrending fault zones
 - Gold systems
 - Elevated δ^{18} O, high • Eu/Eu*/Y*10000 and Δ FMQ= hydrous and oxidised magmas

ca. 2695-2640 Ma: Subduction and orogenesis **Orogenic gold systems dominate** E. WABIGOON Detour Fenelon 9 A' **OPATICA** LEGEND QUETICO Crogenic gold Fluids migrating from through/from NVZ Greenstone belt - high to magmatic rocks WAWA ABITIBI low-grade metamorphism) PDF Fluid from devdration Windfall Lal Alkaline intrusions of mafic rocks KL SVZ NOP CLLF Deformed sanukitoid Major compressional structure **PONTIAC?** Sediment deposition **OPATICA?** Melt fluxed from slab MRVT Cryptic N-S Syn-tectonic/ MRVT Ad Post-tectonic granites Fluid fluxed from slab crustal margin Porcupine and Timiskaming NVZ sediment deposition А SVZ Semi-emergen setting Old rift architecture: 1. Metamorphic fluid (and gold) release - fluids localised into major Felsic crust structures: 2. Thicker Lower crust volcanic sequences in Mantle/lithosphere Lithosphere Intrusions: / the SVZ and ping structures? NVZ rifts 1. Sanukitoids formed in arc provide greater phase may provide gold source of gold sources and fluids 2. Syn-orogenic alkaline 'Thin-zones' inherited 3. Inversion of instrusions provide heat, fluid from rifting? rift structures Sources: provides a fault 1. >2704-2695 Ma Syn-rift 'drip' Ambient mantle network for fluid/melt sources: fluid and 2. <2704-2695 Ma arc-related Oxidised melts and fluids metasomatise the lithosphere magma fluid/melt sources melts enter the upper crust movement Both sources tapped during Subduction period at <2695 Ma orogenesis . 2695-2685 Ma metasomatises overlying lithosphere Slab break-off at Non-optimal distance NOT TO SCALE ca. 2685 Ma? from trench Mole et al. (2022) Ore Geology Review CANADA APOGÉE Canada FIRST CANADA RESEARCH FONDS

D'EXCELLENCE

EXCELLENCE

Mineral Exploration Research Centre at the HAROUAIL School of Earth Sciences

Summary

>2750-2695 Ma

- A rift-dominated tectonic setting
- VMS and Ni-Cu-PGE systems are showing variable Hf- and O-isotopes, but ϵ Hf signatures are relatively high and δ^{18} O are low
- Syn-volcanic mineral systems, VMS and Ni-Cu-PGE deposits are localised within a complex and evolving rift architecture

<2695 Ma

- Major shift observed in multiple geochemical and isotopic parameters
- Orogenesis and subduction-dominated tectonic setting
- Gold systems may be driven by the more hydrous, oxidised source zones present at this time
- However, localisation appears strongly influenced by syn-volcanic architecture

Thank you. Questions?

Contact: knymoen@laurentian.ca

