Sources of fluids, carbon and sulfur and fluid flow along the Cadillac-Larder Lake Deformation Zone

Georges Beaudoin

Presentation Outline

- Introduction to stable isotope geochemistry
- Stable isotope composition of orogenic gold deposits
- Sources of fluids along the Cadillac –Larder Lake

Deformation Zone

• Fluid flow constraints along the Augmitto-Bouzan segment

Overview of Stable Isotope Geochemistry

- Stable atoms of chemical elements
- Isotopes have a different number of neutrons (N)

Overview of Stable Isotope Geochemistry Mass Atomic Weight (12C = 12.) Symbol Atomic Neutron Abundance Number number Number (per cent) z N м Several isotopes of one • 00 08 1.007825 element 0.015 2.0140 6.01512 Different abundance 7.01600 92.58 19 78 10.0129 11.00931 • Several ratios heavy/light 08.80 1.11 13.00335 99.6 14.00307 0.37 15.00011 0 99.759 15,99491

0.031

0.204

92.21

4.70

0.7

4.22

75.53

0.014

16

18

16.99914

27.9769

28.97649

29.97376

31.9720

32.97140

33.96786

35.96709

34.96885

36.96590

Sharp (2017)

Overview of Stable Isotope Geochemistry

 δ value (per mil ‰); {low, high, but has no mass}

$\delta = \left(\frac{R_x - R_{std}}{R_{std}}\right) >$	<1000
---	-------

where R is isotope ratio, e.g. ¹⁸O/¹⁶O

lement Standard	Standard
Standard Mean Ocean Water	V-SMOW
Boric acid (NBS)	SRM 951
Belemnitella americana from the Cretaceous Peedee formation, South Carolina	V-PDB
Air nitrogen	N2 (atm.)
Standard Mean Ocean Water	V-SMOW
Quartz sand	NBS-28
Troilite (FeS) from the Canyon Diablo iron meteorite	V-CDT
I Seawater chloride	SMOC

Overview of Stable Isotope Geochemistry

Mass dependent fractionation

 $H_2^{16}O + {}^{18}O = H_2^{18}O + {}^{16}O$ Isotopic Equilibrium $\alpha \sim k = f$ (vibration energy)

- Temperature : $\alpha \sim 1/T2$ ٠
- Pressure : negligeable for crystals, ٠
- Chemical composition : $SiO_2 > Fe_2O_3$ or $SO_4 > H_2S$

Overview of Stable Isotope Geochemistry

Mass •

- Ionic radius
- Charge •
- Crystal structure : diamond > graphite

Overview of Stable Isotope Geochemistry

- Kinetic Effects Disequilibrium
 - Unidirectional
 - Diffusion
 - Biologic ٠
 - Photosynthesis (e.g. C)
 - Bacterial reduction (e.g. S)

METALEARTH

Mass Independent Fractionation (MIF)

> $\Delta^{17}O = \delta^{17}O - 0.53 \delta^{18}O$ (ozone) Δ^{33} S = δ^{33} S - 0.515 δ^{34} S (UV light)

Stable Isotope Composition of Orogenic Gold Deposits

Stable Isotope Composition of Orogenic Gold Deposits

Stable Isotope Composition of Orogenic Gold Deposits

Stable Isotope Composition of Orogenic Gold Deposits

Stable Isotope Composition of Orogenic Gold Deposits

Stable Isotope Composition of Orogenic Gold Deposits

Stable Isotope Composition of Orogenic Gold Deposits

∆³3S

- # Homogeneous S reservoir

Stable Isotope Composition of Orogenic Gold Deposits

Cenozoic Mesozoic Paleozoic Proterozoic Archean

Stable Isotope Composition of Orogenic Gold Deposits

Low $\delta^{13}C$

- Appalachian/Caledonian
- · Corg-rich sedimentary rocks

Sources of fluids along the CLLDz

Sources of fluids along the CLLDz

Qz-Tur-Carb-Chl veins. Literature: 291; Metal Earth: 317

Beaudoin et al. (in prep.)

Sources of fluids along the CLLDz

Sources of fluids along the CLLDz

Ν

Sources of fluids along the CLLDz

Sources of fluids along the CLLDz

- Metamorphic fluids
- Boiling
- Mica alteration

Sources of fluids along the CLLDz

□ Literature o This study ■ Kirkland-Larder ■ Rouyn ■ Joannes ■ Bousquet ■ Beaupré ■ Halet ■ Val-d'Or Lake

One common Upper Crustal fluid, 2 slightly different Metamorphic fluids, both auriferous

Beaudoin et al. (in prep.)

Fluid Flow Constraints, Augmitto-Bouzan

Raymond et al. (2024)

Fluid Flow Constraints, Augmitto-Bouzan

Fluid Flow Constraints, Augmitto-Bouzan

Raymond et al. (2024)

Raymond et al. (2024)

Fluid Flow Constraints, Augmitto-Bouzan

Fluid Flow Constraints, Augmitto-Bouzan Lac Eastw Augmitto Cinderella Gamble Astoria Bay Bouzan Е 400°0 (E) 1000 N 450°C 450°C 2000 5000 10 000 0 X (m)

Temperature and permeability in plane of CLLDz

Raymond et al. (2024)

Fluid Flow Constraints, Augmitto-Bouzan

Fluid Flow Constraints, Augmitto-Bouzan

Fluid Flow Constraints, Augmitto-Bouzan

Summary: Crustal-scale hydrogeology model

Données non-publiées

- : prth
 - Deep-seated auriferous metamorphic fluids mixing with poral upper crustal fluids
 - Vertical advection of highertemperature deep-seated fluids in the structural conduits
 - Provinciality of auriferous metamorphic fluids, even along the same structural corridor