The Electrochemical Flocculation of Colloidal Gold by Semiconductive P-Type Pyrite at the Brucejack Deposit, NW British Columbia: a Solution to the Bonanza Gold Ore Paradox?
MC G ill Hydrothermal Insights from paragenetic observations, nanoscale imaging of electrum, and joint laser ablation ICP-MS—synchrotron x-ray spectroscopy analyses of pyrite
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VI. Early Pyrite-Electrum ‘Trigger’ relationship

Macro-scale observations
(A-F): Representative drill core photographs illustrating the close spatial relationship between

VIl. LA-ICP-MS Pyrite Chemistry - Stage | Veins
(A): Geologic Cross- A A) Valley of the Kings Section (X-X’)
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section through the

X. SR-uXRF Pyrite Chemistry -

Bonanza Epithermal Veins
Right: High resolution synchrotron micro X-ray fluorescence (SR-uXRF)

l. Background & Research Motivation

« A growing body of evidence suggests that bonanza-type hydrothermal gold deposits (e.g., Brucejack) are formed
by the physical transport of gold as a colloid (i.e., a suspension of < 10 nm, negatively-charged nanoparticles in an

Il. Key Results

« Detailed paragenetic observations at Brucejack show that ore-stage epithermal carbonate-quartz-electrum
veins commonly host bonanza gold where these veins cross-cut earlier mesothermal pyrite veins. This

V. Evidence for Colloidal Transport & Flocculation of Gold

(A-F): Transmission Electron Microscopic (TEM) images of mineralised Stage Il veins at Brucejack reveal the
presence of ~ < 1to 10 nm wide spheres of electrum (A & B (low-magnification) and C-F (high-resolution)).
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