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Geology, genesis, and exploration for magmatic and magmatic-hydrothermal ore deposits

Global distribution of major porphyry CuxMo+Au
and related epithermal Au-Ag-Cu deposits:
Porphyry systems are common in arcs, but large
economic deposits are rare, by definition

® Porphyry deposits
Epithermal deposits

Richards, J.P., 2013, Giant ore deposits form by optimal alignments and
combinations of geological processes: Nature Geoscience, v. 6, p. 911-916.

Porphyry deposits
» Porphyry Cu deposits come in all sizes, from small
subeconomic systems displaying weak alteration and a few
small veins, to giant deposits with alteration zones covering
100s of km?, with intensely veined and mineralized centres.

» While small deposits may be economic (e.g., if grades are
high), most exploration is focused on the discovery of large
deposits (hundreds to billions of tonnes of ore) due to
economies of scale and long mine life.

« By definition, the largest deposits in this spectrum are rare,
although porphyries are a relatively common deposit type,
reflecting a relatively simple, reproducible ore-forming
process. The size of the deposit formed depends on the
efficiency and scale of that process.
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Subduction of hydrated oceanic lithosphere recycles volatiles
(H,0, S, Cl) and alkalis into the asthenospheric mantle wedge,
and progressively increases mantle oxidation state.

Partial melting of the hydrated mantle wedge transfers this
metasomatic signature, including mantle-derived chalcophile
and siderophile metals to the upper plate lithosphere.
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Geology, genesis, and exploration for magmatic and magmatic-hydrothermal ore deposits

Slab dehydration:
Initial fluids released from cool slabs at shallow depths are
water rich, but become more solute-rich at sub-arc depths.
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Ribeiro, J.M., et al., 2015, Composition of the slab-derived fluids released beneath the Mariana forearc: Evidence
for shallow dehydration of the subducting plate: Earth and Planetary Science Letters, v. 418, p. 136—-148.

Slab melting:
Melting of basaltic oceanic crust may give rise to intermediate-
composition magmas named “adakites”, but these are rare in
the Phanerozoic, and not clearly related to porphyry deposits.

(a) Model of slab melting (b) Model of high-pressure,
fractionated mantle melts
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Ribeiro, J.M., et al., 2015, Composition of the slab-derived fluids released beneath the Mariana forearc: Evidence
for shallow dehydration of the subducting plate: Earth and Planetary Science Letters, v. 418, p. 136—148.
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Egjg:gfaﬁng Phanerozoic subduction
involves the release of
oxidizing volatiles from the
slab, which cause
P o otting of metasomatism and partial
SOl melting of the asthenospheric
< R mantle wedge.

Primary arc magmas:

High-Mg basalts (Arculus, 1994; Thirlwall et al., 1996).

1—4 wt.% H,O (Sobolev & Chaussidon, 1996; Kimura & Ariskin, 2014; up to 8 wt.%:
Wallace, 2005).

Cl-rich (500—-2000 ppm CI) (Wallace, 2005).

S-rich (900—2500 ppm S) (de Hoog et al., 2001; Wallace, 2005).
Oxidized (up to FMQ+2) (Brandon & Draper, 1996).
Metalliferous (undepleted; 50—100 ppm Cu, 1-5 ppb Au).

Relatively high
oxidation state of arc
magmas is critical for

the retention of metals
in the melt until late
stages, when they can
be partitioned into an
exsolving

—10 -
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hydrothermal fluid
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T (°C) in Economic Geology, v. 10, p. 235-256.
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Primary arc magmas ascend from the mantle but pool at
the base of the crust due to density contrasts: here they
evolve to lower density, intermediate composition magmas
through the MASH process

» Melting of crustal rocks;
» Assimilation of crustal rocks;

+ Storage of magma in lower crustal
dike/sill complexes;

» Homogenization to form hybrid calc-
alkaline magmas.

This stage may enhance the volatile
content and oxidation state of arc magmas,
but probably is most important in terms of
assembling large volumes of fertile magma
prior to upper crustal emplacement.

Large porphyry deposits require large
volumes of source magma.

B It .
4 [ =< Time scale for
S %Y e evolution of MASH
2 source
Q[ e zone to produce
a .
R—— Vante evolved magmas:
P > 10 m.y. of steady
Rhyolite o0 Basalt state arc magmatism.
Rhyolite™"9eS1te
crustal melt

Whattam, S.A., and Stern, R.J., 2016, Arc magmatic evolution and the
construction of continental crust at the Central American Volcanic Arc
system: International Geology Review, v. 58, p. 653—686.
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system: International Geology Review, v. 58, p. 653—686.

Whattam, S.A., and Stern, R.J., 2016, Arc magmatic evolution and the
construction of continental crust at the Central American Volcanic Arc
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Fig. 7. The temporal evolution of the thermal effect of magmatism. The final panel
shows the approach to a steady state, which is achieved after around 50 Myr.
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will be unlikely to form.

Accounting for magmatic
heat transfer in arcs
increases predicted
lithospheric temperatures
by ~300 K. Steady state
thermal conditions achieved
after around 50 m.y.

Rees Jones, D.W., Katz, R.F.,

Tian, M., and Rudge, J.F., 2018,
Thermal impact of magmatism in
subduction zones: Earth and
Planetary Science Letters, v.
481, p. 73-79.
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For porphyry deposits to
form in the upper crust, a
Pull-apart large volume (>100 km3) of
fertile magma needs to be
emplaced rapidly in a mid—
upper crustal batholith. This
is the source magma from
which fluids and metals will
be derived by exsolution.

Magma flow
in dykes

Failure to rapidly amass this

/\/\/\/ large volume of magmais a

T v key reason for the failure to
form porphyry deposits.

Magma ascent
in piugs &
diapirs

Anatexis: | n
Magma flow by [
percolation IR Richards, J.P., 2003, Tectono-magmatic precursors for
NIT RN porphyry Cu-(Mo-Au) deposit formation: Economic
Geology, v. 98, p. 1515-1533.

Z;r;ﬁ;g;g{l?;ignn;%%rggs el Basaltic flows and PeriOdS Of tenSional or
e compressional stress in
the upper plate are
unfavourable for upper
crustal plutonism,
leading either to
excessive volcanism or

pooling of magma in the

Compression: Magma ascent inhibited;
stored in MASH zones at base of crust deep crust.

é‘:‘sed However, compressional
"‘& ----------------------- stress may be an

- important precursor,

leading to the build up of
large volumes of magma
in the MASH zone, prior
Tosdal, R.M., and Richards, J.P., 2001, Magmatic and structural controls on the development to ascent fO”OWing stress
relaxation.

of porphyry Cu+Moz+Au deposits: Reviews in Economic Geology, v. 14, 157—-181.
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Transpressional (or transtensional) tectonic settings are
optimal for upper crustal plutonism, because magma ascent
can be channelled and focused along vertical low pressure
pathways (jogs and step-overs) in strike-slip fault systems.
Large batholiths and porphyry deposits therefore tend to
form at the end of protracted compressional episodes,
when stresses relax or change to shear.

Shear: Magmas rise buoyantly up Composite volcanoes develop
dilational transpressional zones bove shallow magma chambers;

potential for PCD formation

9.0
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Fig. 3.1 in Burnham, C.W., 1979,
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edition: New York, John Wiley and

Wt % Hzo Sons, p. 71-136.
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Porphyry—epithermal ore deposits form where the upward
flow of this fluid is focused in a cupola zone.
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Cupola
development

Cupolas develop in
response to extensional
strain in the cover rocks,
and are possibly initiated
as vapor-filled breccia
pipes, which are then
back-filled with magma.

Unless a singular cupola
forms to focus fluid flow,
fluid release will be

dissipated and an ore
deposit will not form.

Tosdal, R.M., and Richards, J.P., 2001,
Magmatic and structural controls on the
development of porphyry Cu+Moz+Au deposits:
SEG, Reviews in Economic Geology, v. 14,
157-181.
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Carrigan, C.R., Schubert, G., and Eichelberger, J.C., 1992, Thermal and dynamical regimes of single-

and two-phase magmatic flow in dikes: Journal of Geophysical Research, v. 97, p. 17,377-17,392.
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Carrigan, C.R., Schubert, G., and Eichelberger, J.C., 1992, Thermal and dynamical regimes of single-

and two-phase magmatic flow in dikes: Journal of Geophysical Research, v. 97, p. 17,377-17,392.
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(a) Primed (vapor-saturated)
magma chamber
/\7h/ o

Groundwater circulation;
propyiitc alteration

- Minor volcanism

Steady state degassing
g | from a batholith will not
normally result in ore-
formation.

5km
Dispersed fluid flow

Focussing of fluid flow and
a possible tectonic trigger
for sudden, massive fluid
R [ release seem to be

) required by the short

= duration (<0.1 m.y.) and

singularity of ore-formation
in batholiths.

(b) Massive fluid saturation and expul-
sion triggered by external factor

|~ volcano sector collapse

Limited volcanism;
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i i i ! Ve tockwork and
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Late dike
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Richards, J.P., 2018, A shake-up

Potassic
in the porphyry world? Economic
Geology, v. 113, p. 1225-1233.
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]

Contact breccia
(peperite) with cavity
space filled by later

hydrothermal minerals.

Porgera gold deposit, PNG

Hydrothermal breccia pipe
rooted in magmatic contact
breccia: imbricated texture of
spalled wallrock fragments
accumulated at bottom of
breccia pipe

Imbricated
wallrock
fragments

 Famel tevsiss st i
H Bmramihoe g wit ol

Sillitoe, R.H., and Sawkins,
F.J., 1971, Geologic,
mineralogic and fluid

inclusion studies relating to

the origin of copper-bearing
tourmaline breccia pipes,
Chile: Economic Geology, |H
V. 66, p. 1028—1041.
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Intrusive breccias
and breccia pipes:
commonly barren
when emplaced but
later mineralized
: due to permeability
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Japonesa
tourmaline
breccia pipe,
Copiapd, Chile
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Yerington

A

iz

Proffett, J.M., Jr., and Dilles, J.H., 1984, Geologic map of the Yerington district,

Nevada: Nevada Bureau of Mines and Geology, Map 77, 1:24,000.

Yerington porphyry, Nevada

e T T —

e

~— Cogenetic volcani

s
ising low-density.
salt fluid| '/

_p_n_.ui'i&\
Magma & high-density™
H20 -salt fluid
Inward
crystallization
L Magma & crystals

“{Successive fracturing,
7 dike intrusion & i

upward flow of high-

density saline

aqueous ore fluid
Potassic
alteration B
& Cu-sulfides

-} Non-magmatic
J saline aqueous
fluid rad

3
Magma & -~
higﬁ—der}snty i
saliné-aquepus-~
Cu-bearing fliid .-

Tosdal & Richards (2001) modified from Dilles (1987)




Geology, genesis, and exploration for magmatic and magmatic-hydrothermal ore deposits
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Economic Geology, v. 65, p. 373—408.

Porphyry—epithermal alteration zoning (Sillitoe, 2010)
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Sillitoe, R.H., 2010, Porphyry copper systems: Economic Geology, v. 105, p. 3—41.
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Alteration zonation,
Reko Diq porphyry
Cu deposit, Pakistan

Views from potassic
core, out over phyllic low
ground, to propylitically-

altered volcanic hills in
middle distance

Alteration Styles

Potassic zone: Roughly coincides with main ore zone; consists of
secondary orthoclase-biotite/chlorite, magnetite, anhydrite. An inner
low-grade (Cp, Py, Mo) core may exist, surrounded by a stockwork ore
shell of > 0.5 % Cu (Py, Cp, Bn, Mo, Mt). T <725°C.

Phyllic zone: Coincides with outer part of ore shell and the Py-shell;
consists of quartz-sericite-Py alteration, often with minor chlorite, illite,
rutile; carbonates and sulfates are rare. Sericite grades to clay
minerals towards edge of zone. Coarse Qz-Py veins and dissem Py
(up to 25 vol. %) occur. T ~250-350°C.

Argillic zone: Not always present; consists of clay minerals (kaolinite,
montmorillonite). Py is less abundant.

Advanced argillic zone: Intense acidic alteration in near-surface
environment; consists of clay minerals (kaolinite+quartz below ~300°C;
pyrophyllite/andalusite+quartz above ~300°C), alunite, diaspore,
residual vuggy silica.

Propylitic zone: Outer ore zone, always present; consists of chlorite,
with Py, calcite, epidote. Fades into background over several 100m.
Veins may carry base-metal sulfides.
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Early potassic alteration:

C. Lawley

Secondary K feldspar in granodiorite stained with sodium cobaltinitrite (yellow)

Phyllic (feldspar destructive) alteration:

Sericitic alteration in porphyritic
intrusions from Escondida (left) and
Porgera (photomicrograph, right).
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Argillic and advanced argillic alteration

Arqgillic alteration is the product of cooler, acidic (lower

ax+/ay+) fluids, and is characterized by the breakdown of
aluminosilicate minerals to clays. When magmatic fluids cool, the
sulfur that they carry disproportionates from SO, (S**), which is
the dominant dissolved species at high temperature, to a mixture
of H,S (S27) and sulfuric acid (S8+):

4S50, +4H,0 - H,S+3HSO, +

K-feldspar + acid — clay (kaolinite) + Qz + K+
2 KAISi;Oq + + H,0O Al,Si,O5(OH), + 4 SiO, +

Thus, as high temperature solute-laden or gaseous hydrothermal
fluids cool, they become increasingly acidic, and argillic to
advanced argillic alteration results.

Argillic alteration in volcanic rocks around an epithermal system
(Saheb Divan, Iran)
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Advanced argillic
alteration: alunite-silica
body surrounded by

quartz-kaolinite
(Aras, Iran)

Late propylitic (chloritic) overprint on potassic alteration:
It is important to be able to distinguish chlorite overprinting

of biotite in potassic alteration vs. barren propylitic alteration
(Montoso porphyry Cu prospect, Mexico)
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Porphyry ore formation

Lowell and Guilbert’s porphyry model: Mineralization

VEINS

VEINS
PERIPHERAL g
cp-gal-si

PERIPHERAL

EINLETS

VEINLETS
DISSEMINATEL
AT
i

DISs
+
MICRO VLTS

Lowell, J.D., and Guilbert, J.M., 1970, Lateral and vertical alteration-mineralization
zoning in porphyry copper ore deposits: Economic Geology, v. 65, p. 373—408.

Ore deposition

Key processes that control deposition of sulfides from
magmatic-hydrothermal fluids between 400°-300°C:
1. High initial base metal solubility in hot, saline fluids.

2. Cooling from 600° to 300°C greatly reduces solubility, with
greatest changes occurring between ~425-320°C (Landtwing
et al., 2005; Klemm et al., 2007).

. SO, disproportionates to H,S and SO,?~ below ~400°C
(Holland, 1965).

Holland, H.D., 1965, Some applications of thermochemical data to problems of ore deposits II. Mineral assemblages
and the composition of ore forming fluids: Economic Geology, v. 60, p. 1101-1166.

Klemm, L.M., Pettke, T., Heinrich, C.A., and Campos, E., 2007, Hydrothermal evolution of the El Teniente deposit,
Chile: Porphyry Cu-Mo ore deposit from low-salinity magmatic fluids: Economic Geology, v. 102, p. 1021-1045.

Landtwing, M.R., Pettke, T., Halter, W.E., Heinrich, C.A., Redmond, P.B., Einaudi, M.T., and Kunze, K., 2005, Copper
deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry: Earth and
Planetary Science Letters, v. 235, p. 229-243.
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Disproportionation of SO, <400°C generates H,S and acid.
H,S reacts with dissolved metals to precipitate sulfide minerals:

RSy
Magnetite precipitation:
H,S
Cu-Fe-sulfide precipitation:
H,S
15H,S

Hydrolytic wallrock reactions forming sericite (phyllic alteration) and clay
(argillic alteration) absorb acids and promote further sulfide precipitation.

Mt-Cp-Py-
(covellite)

4. Steep pressure gradients across the ductile—brittle transition
(400—-350°C) promote phase separation, brecciation, and
stockwork formation (permeability) (Fournier, 1999).

. Silica shows retrograde solubility between ~550°-350°C,
creating porosity for ore deposition (Fournier, 1985).

Quartz solubility in water

Fournier, R.O., 1985, The behavior of silica in hydrothermal solutions, in Berger, B.R., and Bethke, P.M., eds.,
Geology and Geochemistry of Epithermal Systems: Soc. Econ. Geol., Reviews in Economic Geology, v. 2, p. 45-61.

Fournier, R.O., 1999, Hydrothermal processes related to movement of fluid from plastic into brittle rock in the
magmatic-epithermal environment: Economic Geology, v. 94, p. 1193—-1212.
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All of these factors lead to the concentration of Cu precipitation
over a relatively narrow temperature (400—-300°C) and depth
interval (2—1 km), but grade and tonnage will be controlled by

the degree of focusing and total volume of fluid flow.

Left: Early veinlets with biotite selvedges, cut by later sinuous quartz A-veins with few sulfides,
in potassic (biotite-K-feldspar) alteration (Bingham).

Right: Brittle Qz-Cp-Mo B-veins cutting potassic (biotite) alteration.

Cp-bearing veins in
« potassic alteration,
"’:t; Gopler, Turkey

Mo-Py-(Cp)-bearing #& &

vein in early phyllic / :
late potassic alteration,
Reko Diq, Pakistan

O-ALTIAAC TN O
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-

e v Disseminated

¢ 300 ¥m
ABEh [}

" chalcopyrite intergrown
with hydrothermal
biotite and K-feldspar
(El Teniente porphyry
Cu deposit, Chile)

Later acidic alteration (phyllic, argillic) may
destroy earlier-deposited mineralization

Vuggy residual
quartz/silicification

kaolinite

Quartz-
pyrophyllite
Chilorite-
sericite

Propylitic

+ . Sillitoe, R.H., 2010
St Multiphase ? ’ ’
Potassic porphyry Porphyry copper
stock systems: Economic

Geology, v. 105, p.
3-41.

Pyritic D-vein with phyllic
alteration halo cross-cutting
earlier quartz-magnetite A-
veins in potassic alteration
(Tameapa porphyry Cu-Mo
deposit, Mexico).
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Fig. 1.1 in Hedenquist, J.W., Izawa, E., Arribas, A., and White, N.C., 1996, Epithermal gold deposits:
Styles, characteristics, and exploration: Resource Geology Special Publication No. 1, 16 p.

Relationship between epithermal systems and

volcanism; the 1970s view (Sillitoe, 1973)
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Fig. 1 in Sillitoe, R.H., 1 , The tops and bottoms of porphyry copper deposits: Economic Geology, v. 68, p. 799-815.
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Colloform banded pyrite

and euhedral enargite M

Chelopech HS gold
deposit, Bulgaria

%evﬁo%}l

Efemcukuru IS Au deposit,
Western Turkey
High grades (up to 210 g/t Au over 1 m)

¥ in quartz-rhodonite-rhodochrosite veins,
% with minor sphalerite and galena.
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If all the above processes operate optimally,
maximally, and non-destructively, then a giant ore
deposit might form.

But if not, it definitely won't.

The giant Bingham Canyon porphyry Cu deposit, Utah
~3 Gt @ 0.70% Cu, 0.04% Mo, 0.3 g/t Au
¥ 21 Mt Cu metal, 30 Moz A

A final word:
Supergene enrichment may transform a
subeconomic deposit into a world-class ore deposit.
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