

Transpressional (or transtensional) tectonic settings are optimal for upper crustal plutonism, because magma ascent can be channelled and focused along vertical low pressure pathways (jogs and step-overs) in strike-slip fault systems. Large batholiths and porphyry deposits therefore tend to form at the end of protracted compressional episodes, when stresses relax or change to shear.

Alteration Styles

- Potassic zone: Roughly coincides with main ore zone; consists of secondary orthoclase-biotite/chlorite, magnetite, anhydrite. An inner low-grade (Cp, Py, Mo) core may exist, surrounded by a stockwork ore shell of > 0.5 % Cu (Py, Cp, Bn, Mo, Mt). T ≤ 725°C.
- Phyllic zone: Coincides with outer part of ore shell and the Py-shell; consists of quartz-sericite-Py alteration, often with minor chlorite, illite, rutile; carbonates and sulfates are rare. Sericite grades to clay minerals towards edge of zone. Coarse Qz-Py veins and dissem Py (up to 25 vol. %) occur. T ~250–350°C.
- Argillic zone: Not always present; consists of clay minerals (kaolinite, montmorillonite). Py is less abundant.
- Advanced argillic zone: Intense acidic alteration in near-surface environment; consists of clay minerals (kaolinite+quartz below ~300°C; pyrophyllite/andalusite+quartz above ~300°C), alunite, diaspore, residual vuggy silica.
- Propylitic zone: Outer ore zone, always present; consists of chlorite, with Py, calcite, epidote. Fades into background over several 100m. Veins may carry base-metal sulfides.

Argillic and advanced argillic alteration

Argillic alteration is the product of cooler, acidic (lower a_{K^+}/a_{H^+}) fluids, and is characterized by the breakdown of aluminosilicate minerals to clays. When magmatic fluids cool, the sulfur that they carry disproportionates from SO₂ (S⁴⁺), which is the dominant dissolved species at high temperature, to a mixture of H₂S (S^{2–}) and sulfuric acid (S⁶⁺):

 $4 \text{ SO}_2 + 4 \text{ H}_2\text{O} \rightarrow \text{ H}_2\text{S} + 3 \text{ HSO}_4^- + 3 \text{ H}^+$

 $\begin{array}{l} \mbox{K-feldspar}+\mbox{acid}\rightarrow\mbox{clay}\ (\mbox{kaolinite})+\mbox{Qz}+\mbox{K+}\\ \mbox{2 KAlSi}_3\mbox{O}_8+\mbox{2 H}^++\mbox{H}_2\mbox{O}\rightarrow\ \mbox{Al}_2\mbox{Si}_2\mbox{O}_5\mbox{(OH)}_4+\mbox{4 SiO}_2+\mbox{2 K}^+ \end{array}$

Thus, as high temperature solute-laden or gaseous hydrothermal fluids cool, they become increasingly acidic, and argillic to advanced argillic alteration results.

Disproportionation of SO₂ <400°C generates H₂S and acid. H₂S reacts with dissolved metals to precipitate sulfide minerals: 4S^{IV}O₂ + 4H₂O ⇔ H₂S^{-II} + 3H₂S^{VI}O₄ Magnetite precipitation: 9Fe^{II}Cl₂ + SO₂ + 10H₂O ⇔ 3Fe^{II}Fe^{III}₂O₄ + H₂S + 18HCl Cu-Fe-sulfide precipitation: CuCl_(aq) + H₂S ⇔ Cu₂S + 2HCl 8CuCl_(aq) + 8Fe^{II}Cl_{2(ac)} + 15H₂S + H₂SO₄ ⇔ 8CuFe^{III}S₂ + 24HCl + 4H₂O
Hydrolytic wallrock reactions forming sericite (phyllic alteration) and clay (argillic alteration) absorb acids and promote further sulfide precipitation.

All of these factors lead to the concentration of Cu precipitation over a relatively narrow temperature (400–300°C) and depth interval (2–1 km), but grade and tonnage will be controlled by the degree of focusing and total volume of fluid flow.

Left: Early veinlets with biotite selvedges, cut by later sinuous quartz A-veins with few sulfides, in potassic (biotite-K-feldspar) alteration (Bingham).

Right: Brittle Qz-Cp-Mo B-veins cutting potassic (biotite) alteration.

A final word: Supergene enrichment may transform a subeconomic deposit into a world-class ore deposit.

