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Source of Natural Electromagnetic Fields Electromagnetic Induction into the Earth
+ Complex interaction between solar plasma * The sounding depth depends on the
(wind) and Earth’s magnetosphere subsurface conductivity and the frequency

* Long period (< 1 Hzor > 15) contents of the induced fields (skin effect).
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General concept of Inversion
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3D Inversion - Modular EM (ModEM) code by Egbert and Kelbert, 2012 and Kelbert et al., 2014

Data preparation and visualization - 3D_Grid (Meqbel, 2017)

General Objectives

The Metal Earth objective is to understand
factors responsible for the differential metal
endowment in the Archean greenstone belts
- Geological and geophysical signatures

- Fault geometry

- Crustal architecture

- Tectonic/geodynamic history

MT will contribute by delineating crustal

conductivity structures
- Constrain source and pathways of mineralized fluids

Provide tectonic/geodynamic explanation for the
structures with constraint from other methods
- Improve the understanding of the mineral systems in
the greenstone belts

MT study across world-class Au districts
* Red Lake- produced >29.6 Moz Au
+ Timmins - produced >76.8 Moz Au
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Geology: (2023) https/doi/10.1130/G50660.1
Crustal conductivity footprint of the orogenic gold district in the Red Lake greenstone belt, western
Superior craton, Canada

Ademola Q Adetunji, Gaétan Launay, lan Ferguson, Jack M. Simmons, Chong Ma, John Ayer, and Bruno Lafrance
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+ It hosts multiple orogenic Au deposits -
the largest deposits are within the Red
Lake greenstone belt which has produced
>29.6 Moz

* The Cochenour and Campbell-Red Lake
deposits are among the largest and
richest Archean gold deposits in Canada

Regional unconformities
Plutonic rocks:

[ sanukitoid suite

[ orogenicplutans
[Jcentinental arc plutons
[ JMesonrchean plutons

+ Investigated with 50 magnetotelluric
(MT) stations - roughly along Lithoprobe
WS2B Seismic line

Supracrustal as5emblages
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Geologic and Tectonic setting

— North Caribou________, (NSS_,

Depth

Percival et al., 2006

Percival et al., 2006

ca. 2.698 - Amalgamation of WRT with Uchi-NCT and Crustal extension

Post-collisional D; strain occurred after 2.70 Ga, Late-stage Au mineralization associated with D,
overprinting and reactivating earlier structures strain and metamorphism

Main-stage Au mineralization associated with D,, occurred before 2.712 Ga
* includes the largest deposits in the Red Lake mine trend

D, deformation Reactivation of D, fabrics and metamorphism
produced the main penetrative structures Emplacement of post-tectonic plutons

Shear zones formed
during D, and D;

ca. 2.72 - 2.70 Ga Kenoran orogeny
» Convergence between NCT and southern terranes
* Thrusting of WRT under the NCT

2.99 - 2.695 Ga - Tectonic events recorded by Uchi terrane, NCT and Berens River plutonic complex
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Resistivity model defines a generally resistive 2,000-10,000 Q.m upper crust - R1 and R2
Upper crust beneath Red Lake mine trend is resistive with some parts having >20,000 Q.m
Shallow crust in the Berens River plutonic complex contains several localized conductors (C4)
C1, C2, and C3 are large-scale subvertical conductivity anomalies.

The lower crust of the NCT is less resistive (with <1000 Q.m) than the upper crust
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Depth (km)

T T

* CO - laterally extensive north-dipping conductor
(<20 Q.m), with its top at 20-25 km depth

+ (1, C2, and C3 are large-scale subvertical
conductivity anomalies.

* COis a large-scale middle- to lower- crustal depths conductor

+ C1 aligns with the boundary between WRT and ERT and connects with CO

+ C2is well resolved and coincides with the Great Bear deposit and might be connected to CO

* C3 lies directly below the Red Lake mine trend with its top at 10 km and extending to depths
>15 km, is consistently imaged as a subvertical feature, and most likely connects with CO.
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* Shear zones beneath the Red Lake mine trend have moderate dips to the south with varying
interpretations

+ Overall interpretation provides evidence for northward subduction of WRT under NCT
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Geophysical Interpretation
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Fluid pathway (C1, C2and C3)
Lithospheric mantle

e Thrust faults
- Extensional reactivation of thrust faults

10 km
Crustal-scale conductor C1 coincides with significant north-dipping seismic reflections, which
extend into the mantle interpreted to represent the suture associated with attempted
subduction of the WRT under the NCT

10

The geometry of C1 is consistent with subduction-related devolatilization and transport of
fluids along the subducting plate

Conductors C2 and C3 represent possible fluid pathways beneath major Au deposits in the RLGB

Both resistivity and seismic results at depths >10-15 km are thus consistent with fluid transport
along a steep fault system

Geophysical Interpretation
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English River terrane

Great Bear
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ezt 0

Fluid pathway (C1, €2 and C3)
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- Extensional reactivation of thrust faults

10 km
Conductors CO and C1 are coeval with the formation of the suture between the NCT and WRT

Lithospheric mantle

10

Their interpretation as the source region for CO,- and Au-rich fluids and as fluid pathways for the
main-phase RLGB mineralization requires them to have formed prior to 2.712 Ga

Incomplete connection of C2 and C3 to the deposits and the resistive crust beneath the Red Lake
mine trend suggests:

* Localized late overprinting of the fluid pathways affected by intrusion of late- to post-orogenic granites
* Thermal processes during the peak metamorphism associated with the intrusions,
+ Development of extensional tectonic structures.

42



New geophysical and geological insights into how crustal architecture influences the gold and base metal endowment of Precambrian terranes

\d
fo o

Deep crustal origin of the
orogenic gold deposit in
south-eastern Australia
constrained by MT
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e Heinson et al., 2021
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Heinson et al. (2021) interpreted a <20 Q-m resistivity zone at >20 km depth beneath the
Lachlan orogenic gold field in southeastern Australia as the source region for gold-rich fluids

Fluids attributed to reactions in carbon- and pyrite-rich sedimentary rocks under amphibolite
conditions at ~550°C

* Production of Au-rich fluids

+ Formation of flake graphite at grain boundaries

Conceptual mineralizing magmatic-hydrothermal model

Accretionary wedge and
downgoing plate
Late- to post-tectonic

<«——— Collisional belt (overriding plate) ——>

Repeated gold enrichment in fault
zones (>2.712 Ga and <2.702 Ga)

intrusions
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ERT

Footprint of the deep
hydrothermal circulation

Lithospheric mantle
Duvolanluol!on and release of the
qold bearing fluids from the lower
crust and possibly the upper mantle
(H20 + H2S + CO2 + Au + As)

itinental crus

Melting of cor

Mantle-derived melts

£
=
=

Heatmg event
(slab break-off / delammation7) 10 km

Fluid-pathway conductors are interpreted to be iron sulfides and/or graphite produced by
hydrothermal interaction of mineralizing fluids with surrounding rocks

Enhanced conductivity of the fluid source region is attributed to interconnected graphite and/or
sulfides

Source region was formed as a result of metamorphic devolatilization of subducted supracrustal rocks
Later large-scale tectonic deformation involved reactivation of existing structures

Interconnected sulfide and/or graphite may have remained in shear zones during reactivation or even
become more efficiently connected, preserving the signature of earlier fluid transport
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Conclusions

Tectonomagmatic processes during the RLGB Au mineralization were related to convergence
between the WRT and the Uchi-North Caribou terranes, cessation of subduction, and
delamination/slab break-off events

The conductors beneath the study area are interpreted to represent the conductivity signature of
altered rocks and structures associated with the orogenic gold system in the RLGB formed during
the last major tectonic events

Formation of a the large-scale lower crustal conductor beneath the RLGB and ERT would have
required relatively widespread heat in order to have produced the temperatures required for
+ development of graphite flakes
+ granulite facies metamorphism needed to produce the CO,- and Au-rich fluids.

The required heat may have resulted from slab break-off or delamination of the subducted WRT

Crustal heating could have also resulted from southward migration of subduction and the
interaction of subduction zone-derived melts with the overlying crust

. CANADA APOGEE

METAL EARTH Canady ™ & a Ivi=

\ l H\Rul AILS ho Earth 5: enc

Extensional tectonics associated with orogenic collapse at ca. 2.7 Ga may have been responsible
for both crustal heating and the late-stage Au mineralization

The MT results do not preclude a moderately conductive zone in the mantle, so the data cannot
exclude a mantle contribution. However, the large mid- to lower-crustal conductor is a more likely
source for the majority of the fluids

It is also possible that the middle to lower crust beneath the RLGB was previously enriched in Au-
rich sulfides by mantle-derived fluids creating the source for the mineralization

Observation of a large subduction-related conductor (C1) and the capability of the
devolatilization process of supracrustal rocks to provide the necessary Au, S, and fluids for the
mineral system provide strong support for the role of subducted supracrustal rocks
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Geology
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Data and Modelling
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Vertical slices

Generally resistive upper crust and
conductive mid-to-lower crust

Resistor R1 extends to mid-crust while R2 &
R3 are mostly confined to the upper crust

Resistivity decreases from south to north
with R1 having values >50,000 'm

E-W trending conductive anomaly C1 and
N-S anomaly C2 are associated to the PDdz
and Pdz

Linear NW-SE trending conductors C4
aligns with BRf

Conductors C3 underlies the Porcupine
assemblages and dips both north and south

Conductors C1-C4 are connected at depth
to the conductive lower crust that could be
source of mineralized fluids

Depth (km)

Depth (km)

€
Distance along profile (km)
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Isosurface at 100 Ohm.m

LOG10[Resistivity (Ohm.m)]
2.0 3.0
_

Isosurface at 200 Ohm.m

Seismic reflection a.  soun South Timmins seismic line North

PDfz

Hollinger Au mine Kidd Creek VMS mine
ﬂ Piz

* Reflectors in greenstone
belt- highlight folded
structures and thrust faults

* Truncation of reflectors in
the upper crust suggests a
south dipping PDdz and
north dipping Pdz

Depth (km)

+ Diffusive reflection zones
in mid-lower crust suggest
multiple subvertical fault
zones in the basement

* PDdz and Pdz are crustal
scale faults

o 5 10 15 20 25 30 35 40 45 50 55

» Thick-skinned deformation strain was accommodated across the whole crust
* Subvertical faulting in the basement and folding & thrusting in the upper crust, which may facilitate
transport of Au bearing fluids from depths to shallow levels and trap Au in folded structures
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+ Reflectors in the upper
crust highlight folded
structures within the
greenstone

+ Kidd Munro assemblage
in a pop-up structure
bounded by the NPdz and
Pdz

* Truncation of reflectors
and diffusive reflection
zones highlight several
steep , interconnected,
and deep-rooted faults

* Sub-horizontal reflectors
in the mid-lower
gneissic basement

* Thick-skinned
deformation (i.e.,
basement-involved
thrusting and folding

Depth (km)

South

Pz Crawchest seismic line North

5

20

25

30

10 15 20 25 30 35 40 45
Distance along profile (km)

Geophysical Interpretation

10 Kenogamissi
Complex?

20

Depth (km)

30

Hollinger Au mine
PDdz

Kidd Creek VMS mine
Pdz

Resistive&

. =2
gneissic crust——————

40 T

* Resistive greenstone belt and Kenogamissi complex underlain by
the conductive mid-to-lower gneissic crust

+ Several conductive corridors spatially associated with PDdz, Pdz

and NPdz and major deposits

» PDdz and Pdz are crustal scale faults
* Footprint of the fluid migration pathways through the crust

Distance along profile (km)
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» Conductors are connected at depth to the conductive mid-lower
crust
* Source of gold bearing fluids?
* Deep seated mineralizing system associated to the Pipestone
deformation zone?
ca. 2750-2695 Ma: Rift-dominated tectonism ca. 2695-2640 Ma: Subduction and orogenesis
VMS Cu-Au-Pb-Zn and komatiite-hosted Ni-Cu-PGE systems dominate Orogenic gold i s

Mole et al., 2022
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Conclusions

+ Orogenic gold deposits are closely associated with crustal-scale major fault zones

+ The faults are pathways that channel hydrothermal fluids responsible for gold deposition
* Hydrothermal circulation could be active over several deformation events

+ Deformation events typically control gold mineralization
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